For faster navigation, this Iframe is preloading the Wikiwand page for Hydrovinylation.

Hydrovinylation

In organic chemistry, hydrovinylation is the formal insertion of an alkene into the C-H bond of ethylene (H2C=CH2). The more general reaction, hydroalkenylation, is the formal insertion of an alkene into the C-H bond of any terminal alkene. The reaction is catalyzed by metal complexes. A representative reaction is the conversion of styrene and ethylene to 3-phenybutene:[1]

Ethylene dimerization

The dimerization of ethylene gives 1-butene is another example of a hydrovinylation. In the Dimersol and Alphabutol Processes, alkenes are dimerized for the production of gasoline and for comonomers such as 1-butene. These processes operate at several refineries across the world at the scales of about 400,000 tons/year (2006 report).[2] 1-Butene is amenable to isomerization to 2-butenes, which is used in Olefin conversion technology to give propylene.

Hydroarylation

Hydroarylation is again a special case of hydrovinylation. Hydroarylation has been demonstrated for alkyne and alkene substrates. An early example was provided by the Murai reaction, which involves the insertion of alkenes into a C-H bond of acetophenone. The keto group directs the regiochemistry, stabilizing an aryl intermediate.[3]

A Murai reaction (X = directing group, typically X = O).

When catalyzed by palladium carboxylates, a key step is electrophilic aromatic substitution to give a Pd(II) aryl intermediate.[4] Gold behaves similarly.[5] Hydropyridination is a similar reaction, but entails addition of a pyridyl-H bond to alkenes and alkynes.[6]

In organic synthesis

As first reported by Alderson, Jenner and Lindsey, hydrovinylation uses rhodium- and ruthenium-based catalysts. Catalysts based on iron, cobalt, nickel, and palladium have also been demonstrated. The addition can be done highly regio- and stereoselectively, the choices of metal centers, ligands, substrates and counterions often play very important role.[7][8][9] N-heterocyclic carbene complexes of Ni allow the selective preparations of functionalized geminal olefins or 1,1-disubstituted alkenes.[10][11]

References

  1. ^ T. V. RajanBabu; G. A. Cox (2014). "5.32 Hydrovinylation Reactions in Organic Synthesis". Hydrovinylation Reactions in Organic Synthesis. Comprehensive Organic Synthesis II (Second Edition). Vol. 5. pp. 1582–1620. doi:10.1016/B978-0-08-097742-3.00533-4. ISBN 978-0-08-097743-0.
  2. ^ Yves Chauvin (2006). "Olefin Metathesis: The Early Days (Nobel Lecture)". Angew. Chem. Int. Ed. 45 (23): 3740–3747. doi:10.1002/anie.200601234. PMID 16724296.
  3. ^ Murai, Shinji; Kakiuchi, Fumitoshi; Sekine, Shinya; Tanaka, Yasuo; Kamatani, Asayuki; Sonoda, Motohiro; Chatani, Naoto (1993-12-09). "Efficient catalytic addition of aromatic carbon-hydrogen bonds to olefins". Nature. 366 (6455): 529–531. Bibcode:1993Natur.366..529M. doi:10.1038/366529a0. S2CID 5627826.
  4. ^ Jia, C.; Kitamura, T.; Fujiwara, Y. (2001). "Catalytic Functionalization of Arenes and Alkanes Via C-H Bond Activation". Acc. Chem. Res. 34 (8): 633–639. doi:10.1021/ar000209h. PMID 11513570.
  5. ^ Shen, Hong C. (2008). "Recent advances in syntheses of heterocycles and carbocycles via homogeneous gold catalysis. Part 1: Heteroatom addition and hydroarylation reactions of alkynes, allenes, and alkenes". Tetrahedron. 64 (18): 3885–3903. doi:10.1016/j.tet.2008.01.081.
  6. ^ Li, Yuexuan; Deng, Gongda; Zeng, Xiaoming (2016). "Chromium-Catalyzed Regioselective Hydropyridination of Styrenes". Organometallics. 35 (5): 747–750. doi:10.1021/acs.organomet.5b01021.
  7. ^ Grutters, M. M. P.; Muller, C.; Vogt, D. (2006). "Highly Selective Cobalt-Catalyzed Hydrovinylation of Styrene". J. Am. Chem. Soc. 128 (23): 7414–5. doi:10.1021/ja058095y. PMID 16756275.
  8. ^ Hilt, G.; Danz, M.; Treutwein, J. (2009). "Cobalt-Catalyzed 1,4-Hydrovinylation of Styrenes and 1-Aryl-1,3-butadienes". Org. Lett. 11 (15): 3322–5. doi:10.1021/ol901064p. PMID 19583205.
  9. ^ Sharma, R. K.; RajanBabu, T. V. (2010). "Asymmetric Hydrovinylation of Unactivated Linear 1,3-Dienes". J. Am. Chem. Soc. 132 (10): 3295–7. doi:10.1021/ja1004703. PMC 2836389. PMID 20163120.
  10. ^ Ho, C.-Y.; He, L. (2010). "Catalytic Intermolecular Tail-to-Tail Hydroalkenylation of Styrenes with alpha-Olefins: Regioselective Migratory Insertion Controlled by a Nickel/N-Heterocyclic Carbene". Angew. Chem. Int. Ed. 49 (48): 9182–9186. doi:10.1002/anie.201001849. PMID 20853303.
  11. ^ Ho, C.-Y.; He, L. (2012). "Shuffle Off the Classic Beta-Si Elimination by Ni-NHC Cooperation: Implication for C–C Forming Reactions Involving Ni-Alkyl-Beta-Silanes". Chem. Commun. 48 (10): 1481–1483. doi:10.1039/c1cc14593b. PMID 22116100.
{{bottomLinkPreText}} {{bottomLinkText}}
Hydrovinylation
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?