For faster navigation, this Iframe is preloading the Wikiwand page for Coupling reaction.

Coupling reaction

In organic chemistry, a coupling reaction is a type of reaction in which two reactant molecules are bonded together. Such reactions often require the aid of a metal catalyst. In one important reaction type, a main group organometallic compound of the type R-M (where R = organic group, M = main group centre metal atom) reacts with an organic halide of the type R'-X with formation of a new carbon-carbon bond in the product R-R'. The most common type of coupling reaction is the cross coupling reaction.[1][2][3]

Richard F. Heck, Ei-ichi Negishi, and Akira Suzuki were awarded the 2010 Nobel Prize in Chemistry for developing palladium-catalyzed cross coupling reactions.[4][5]

Broadly speaking, two types of coupling reactions are recognized:

  • Homocouplings joining two identical partners. The product is symmetrical R−R
  • Heterocouplings joining two different partners. These reactions are also called cross-coupling reactions.[6] The product is unsymmetrical, R−R'.

Homo-coupling types

[edit]

Coupling reactions are illustrated by the Ullmann reaction:

Ullmann overview
Ullmann overview
Reaction Year Organic compound Coupler Remark
Wurtz reaction 1855 R-X sp3 Na as reductant dry ether as medium
Pinacol coupling reaction 1859 R-HC=O or R2(C=O) various metals requires proton donor
Glaser coupling 1869 RC≡CH sp Cu O2 as H-acceptor
Ullmann reaction 1901 Ar-X sp2 Cu high temperatures
Fittig reaction Ar-X sp2 Na dry ether as medium
Scholl reaction 1910 ArH sp2 NaAlCl4(l) O2 as H-acceptor; presumably trace Fe3+ catalyst; requires high heat

Cross-coupling types

[edit]
The Heck reaction
The Heck reaction
Reaction Year Reactant A Reactant B Catalyst Remark
Grignard reaction 1900 R-MgBr sp, sp2, sp3 R-HC=O or R(C=O)R2 sp2 not catalytic
Gomberg-Bachmann reaction 1924 Ar-H sp2 Ar'-N2+X sp2 not catalytic
Cadiot-Chodkiewicz coupling 1957 RC≡CH sp RC≡CX sp Cu requires base
Castro-Stephens coupling 1963 RC≡CH sp Ar-X sp2 Cu
Corey-House synthesis 1967 R2CuLi or RMgX sp3 R-X sp2, sp3 Cu Cu-catalyzed version by Kochi, 1971
Cassar reaction 1970 Alkene sp2 R-X sp3 Pd requires base
Kumada coupling 1972 Ar-MgBr sp2, sp3 Ar-X sp2 Pd or Ni or Fe
Heck reaction 1972 alkene sp2 Ar-X sp2 Pd or Ni requires base
Sonogashira coupling 1975 RC≡CH sp R-X sp3 sp2 Pd and Cu requires base
Murahashi coupling[7] 1975 RLi sp2, sp3 Ar-X sp2 Pd or Ni Pd-catalyzed version by Murahashi, 1979
Negishi coupling 1977 R-Zn-X sp3, sp2, sp R-X sp3 sp2 Pd or Ni
Stille cross coupling 1978 R-SnR3 sp3, sp2, sp R-X sp3 sp2 Pd
Suzuki reaction 1979 R-B(OR)2 sp2 R-X sp3 sp2 Pd or Ni requires base
Hiyama coupling 1988 R-SiR3 sp2 R-X sp3 sp2 Pd requires base
Buchwald-Hartwig reaction 1994 R2N-H sp3 R-X sp2 Pd N-C coupling,
second generation free amine
Fukuyama coupling 1998 R-Zn-I sp3 RCO(SEt) sp2 Pd or Ni[8]
Liebeskind–Srogl coupling 2000 R-B(OR)2 sp3, sp2 RCO(SEt) Ar-SMe sp2 Pd requires CuTC
(Li) Cross dehydrogenative coupling(CDC) 2004 R-H sp, sp2, sp3 R'-H sp, sp2, sp3 Cu, Fe, Pd etc requires oxidant or dehydrogenation
Wurtz-Fittig reaction R-X sp3 Ar-X sp2 Na dry ether

Applications

[edit]

Coupling reactions are routinely employed in the preparation of pharmaceuticals.[3] Conjugated polymers are prepared using this technology as well.[9]

References

[edit]
  1. ^ Organic Synthesis using Transition Metals Rod Bates ISBN 978-1-84127-107-1
  2. ^ New Trends in Cross-Coupling: Theory and Applications Thomas Colacot (Editor) 2014 ISBN 978-1-84973-896-5
  3. ^ a b King, A. O.; Yasuda, N. (2004). "Palladium-Catalyzed Cross-Coupling Reactions in the Synthesis of Pharmaceuticals". Organometallics in Process Chemistry. Topics in Organometallic Chemistry. Vol. 6. Heidelberg: Springer. pp. 205–245. doi:10.1007/b94551. ISBN 978-3-540-01603-8.
  4. ^ "The Nobel Prize in Chemistry 2010 - Richard F. Heck, Ei-ichi Negishi, Akira Suzuki". NobelPrize.org. 2010-10-06. Retrieved 2010-10-06.
  5. ^ Johansson Seechurn, Carin C. C.; Kitching, Matthew O.; Colacot, Thomas J.; Snieckus, Victor (2012). "Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize". Angewandte Chemie International Edition. 51 (21): 5062–5085. doi:10.1002/anie.201107017. PMID 22573393.
  6. ^ Smith, Michael B.; March, Jerry (2007), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience, p. 449, ISBN 978-0-471-72091-1
  7. ^ Hazra, Susanta; Johansson Seechurn, Carin C. C.; Handa, Sachin; Colacot, Thomas J. (2021-10-15). "The Resurrection of Murahashi Coupling after Four Decades". ACS Catalysis. 11 (21): 13188–13202. doi:10.1021/acscatal.1c03564. ISSN 2155-5435. S2CID 244613990.
  8. ^ Nielsen, Daniel K.; Huang, Chung-Yang (Dennis); Doyle, Abigail G. (2013-08-20). "Directed Nickel-Catalyzed Negishi Cross Coupling of Alkyl Aziridines". Journal of the American Chemical Society. 135 (36): 13605–13609. doi:10.1021/ja4076716. ISSN 0002-7863. PMID 23961769.
  9. ^ Hartwig, J. F. (2010). Organotransition Metal Chemistry, from Bonding to Catalysis. New York: University Science Books. ISBN 978-1-891389-53-5.
{{bottomLinkPreText}} {{bottomLinkText}}
Coupling reaction
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?