For faster navigation, this Iframe is preloading the Wikiwand page for Hénon–Heiles system.

Hénon–Heiles system

Contour plot of the Hénon–Heiles potential

While at Princeton in 1962, Michel Hénon and Carl Heiles worked on the non-linear motion of a star around a galactic center with the motion restricted to a plane. In 1964 they published an article titled "The applicability of the third integral of motion: Some numerical experiments".[1] Their original idea was to find a third integral of motion in a galactic dynamics. For that purpose they took a simplified two-dimensional nonlinear rotational symmetric potential and found that the third integral existed only for a limited number of initial conditions. In the modern perspective the initial conditions that do not have the third integral of motion are called chaotic orbits.

Introduction

The Hénon–Heiles potential can be expressed as[2]

The Hénon–Heiles Hamiltonian can be written as

The Hénon–Heiles system (HHS) is defined by the following four equations:

In the classical chaos community, the value of the parameter is usually taken as unity. Since HHS is specified in , we need a Hamiltonian with 2 degrees of freedom to model it. It can be solved for some cases using Painlevé analysis.

Quantum Hénon–Heiles Hamiltonian

In the quantum case the Hénon–Heiles Hamiltonian can be written as a two-dimensional Schrödinger equation.

The corresponding two-dimensional Schrödinger equation is given by

Wada property of the exit basins

Hénon–Heiles system shows rich dynamical behavior. Usually the Wada property cannot be seen in the Hamiltonian system, but Hénon–Heiles exit basin shows an interesting Wada property. It can be seen that when the energy is greater than the critical energy, the Hénon–Heiles system has three exit basins. In 2001 M. A. F. Sanjuán et al.[3] had shown that in the Hénon–Heiles system the exit basins have the Wada property.

References

  1. ^ Hénon, M.; Heiles, C. (1964). "The applicability of the third integral of motion: Some numerical experiments". The Astronomical Journal. 69: 73–79. Bibcode:1964AJ.....69...73H. doi:10.1086/109234.
  2. ^ Hénon, Michel (1983), "Numerical exploration of Hamiltonian Systems", in Iooss, G. (ed.), Chaotic Behaviour of Deterministic Systems, Elsevier Science Ltd, pp. 53–170, ISBN 044486542X
  3. ^ Aguirre, Jacobo; Vallejo, Juan C.; Sanjuán, Miguel A. F. (2001-11-27). "Wada basins and chaotic invariant sets in the Hénon-Heiles system". Physical Review E. 64 (6). American Physical Society (APS): 066208. doi:10.1103/physreve.64.066208. hdl:10261/342147. ISSN 1063-651X.
{{bottomLinkPreText}} {{bottomLinkText}}
Hénon–Heiles system
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?