For faster navigation, this Iframe is preloading the Wikiwand page for Generic flatness.

Generic flatness

In algebraic geometry and commutative algebra, the theorems of generic flatness and generic freeness state that under certain hypotheses, a sheaf of modules on a scheme is flat or free. They are due to Alexander Grothendieck.

Generic flatness states that if Y is an integral locally noetherian scheme, u : XY is a finite type morphism of schemes, and F is a coherent OX-module, then there is a non-empty open subset U of Y such that the restriction of F to u−1(U) is flat over U.[1]

Because Y is integral, U is a dense open subset of Y. This can be applied to deduce a variant of generic flatness which is true when the base is not integral.[2] Suppose that S is a noetherian scheme, u : XS is a finite type morphism, and F is a coherent OX module. Then there exists a partition of S into locally closed subsets S1, ..., Sn with the following property: Give each Si its reduced scheme structure, denote by Xi the fiber product X ×S Si, and denote by Fi the restriction FOS OSi; then each Fi is flat.

Generic freeness

[edit]

Generic flatness is a consequence of the generic freeness lemma. Generic freeness states that if A is a noetherian integral domain, B is a finite type A-algebra, and M is a finite type B-module, then there exists a non-zero element f of A such that Mf is a free Af-module.[3] Generic freeness can be extended to the graded situation: If B is graded by the natural numbers, A acts in degree zero, and M is a graded B-module, then f may be chosen such that each graded component of Mf is free.[4]

Generic freeness is proved using Grothendieck's technique of dévissage. Another version of generic freeness can be proved using Noether's normalization lemma.

References

[edit]
  1. ^ EGA IV2, Théorème 6.9.1
  2. ^ EGA IV2, Corollaire 6.9.3
  3. ^ EGA IV2, Lemme 6.9.2
  4. ^ Eisenbud, Theorem 14.4

Bibliography

[edit]
  • Eisenbud, David (1995), Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94268-1, MR 1322960
  • Grothendieck, Alexandre; Dieudonné, Jean (1965). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Seconde partie". Publications Mathématiques de l'IHÉS. 24. doi:10.1007/bf02684322. MR 0199181.
{{bottomLinkPreText}} {{bottomLinkText}}
Generic flatness
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 ๐ŸŽ‰! the new version arrives on September 1st! Don't want to wait?