For faster navigation, this Iframe is preloading the Wikiwand page for Flexoelectricity.


This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Flexoelectricity" – news · newspapers · books · scholar · JSTOR (May 2012) (Learn how and when to remove this message)

Flexoelectricity is a property of a dielectric material where there is coupling between electrical polarization and a strain gradient. Flexoelectricity is closely related to piezoelectricity, but while piezoelectricity refers to polarization due to uniform strain, flexoelectricity refers specifically to polarization due to strain that changes from point to point in the material. This nonuniform strain breaks centrosymmetry, meaning that unlike in piezoelectricity, flexoelectric effects occur in both centrosymmetric and asymmetric crystal structures.[1] Flexoelectricity is not the same as Ferroelasticity.

In common useage flexoelectricity is the generation of polarization due to a strain gradient; inverse flexoectricity is when polarization, often due to an applied electric field, generates a strain gradient. Converse flexoelectricity is where a polarization gradient induces strain in a material.[2]

The electric polarization due to mechanical strain of in a dielectric is given by

where the first term corresponds to the direct piezoelectric effect and the second term corresponds to the flexoelectric polarization induced by the strain gradient.

Here, the flexoelectric coefficient, , is a fourth-rank polar tensor and is the coefficient corresponding to the direct piezoelectric effect.

See also


  1. ^ Pavlo Zubko, Gustau Catalan, and Alexander K. Tagantsev (2013). "Flexoelectric Effect in Solids". Annual Review of Materials Research. 43: 387–421. Bibcode:2013AnRMS..43..387Z. doi:10.1146/annurev-matsci-071312-121634. hdl:10261/99362.((cite journal)): CS1 maint: multiple names: authors list (link)
  2. ^ Abdollahi A, Domingo N, Arias I, Catalan G (2019). "Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials". Nature Communications. 10 (1): 1266. Bibcode:2019NatCo..10.1266A. doi:10.1038/s41467-019-09266-y. PMC 6427004. PMID 30894544.
{{bottomLinkPreText}} {{bottomLinkText}}
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!

Your input will affect cover photo selection, along with input from other users.


Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?