Ellipse
In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from (the limiting case of a circle) to (the limiting case of infinite elongation, no longer an ellipse but a parabola).
An ellipse has a simple algebraic solution for its area, but only approximations for its perimeter (also known as circumference), for which integration is required to obtain an exact solution.
Analytically, the equation of a standard ellipse centered at the origin with width and height is:
Assuming , the foci are for . The standard parametric equation is:
Ellipses are the closed type of conic section: a plane curve tracing the intersection of a cone with a plane (see figure). Ellipses have many similarities with the other two forms of conic sections, parabolas and hyperbolas, both of which are open and unbounded. An angled cross section of a right circular cylinder is also an ellipse.
An ellipse may also be defined in terms of one focal point and a line outside the ellipse called the directrix: for all points on the ellipse, the ratio between the distance to the focus and the distance to the directrix is a constant. This constant ratio is the abovementioned eccentricity:
Ellipses are common in physics, astronomy and engineering. For example, the orbit of each planet in the Solar System is approximately an ellipse with the Sun at one focus point (more precisely, the focus is the barycenter of the Sun–planet pair). The same is true for moons orbiting planets and all other systems of two astronomical bodies. The shapes of planets and stars are often well described by ellipsoids. A circle viewed from a side angle looks like an ellipse: that is, the ellipse is the image of a circle under parallel or perspective projection. The ellipse is also the simplest Lissajous figure formed when the horizontal and vertical motions are sinusoids with the same frequency: a similar effect leads to elliptical polarization of light in optics.
The name, ἔλλειψις (élleipsis, "omission"), was given by Apollonius of Perga in his Conics.
Definition as locus of points
An ellipse can be defined geometrically as a set or locus of points in the Euclidean plane:
The midpoint of the line segment joining the foci is called the center of the ellipse. The line through the foci is called the major axis, and the line perpendicular to it through the center is the minor axis. The major axis intersects the ellipse at two vertices , which have distance to the center. The distance of the foci to the center is called the focal distance or linear eccentricity. The quotient is the eccentricity.
The case yields a circle and is included as a special type of ellipse.
The equation can be viewed in a different way (see figure):
is called the circular directrix (related to focus ) of the ellipse.^{[1]}^{[2]} This property should not be confused with the definition of an ellipse using a directrix line below.
Using Dandelin spheres, one can prove that any section of a cone with a plane is an ellipse, assuming the plane does not contain the apex and has slope less than that of the lines on the cone.
In Cartesian coordinates
Standard equation
The standard form of an ellipse in Cartesian coordinates assumes that the origin is the center of the ellipse, the xaxis is the major axis, and:
 the foci are the points ,
 the vertices are .
For an arbitrary point the distance to the focus is and to the other focus . Hence the point is on the ellipse whenever:
Removing the radicals by suitable squarings and using (see diagram) produces the standard equation of the ellipse:^{[3]}
The width and height parameters are called the semimajor and semiminor axes. The top and bottom points are the covertices. The distances from a point on the ellipse to the left and right foci are and .
It follows from the equation that the ellipse is symmetric with respect to the coordinate axes and hence with respect to the origin.
Parameters
Principal axes
Throughout this article, the semimajor and semiminor axes are denoted and , respectively, i.e.
In principle, the canonical ellipse equation may have (and hence the ellipse would be taller than it is wide). This form can be converted to the standard form by transposing the variable names and and the parameter names and
Linear eccentricity
This is the distance from the center to a focus: .
Eccentricity
The eccentricity can be expressed as:
assuming An ellipse with equal axes () has zero eccentricity, and is a circle.
Semilatus rectum
The length of the chord through one focus, perpendicular to the major axis, is called the latus rectum. One half of it is the semilatus rectum . A calculation shows:^{[4]}
The semilatus rectum is equal to the radius of curvature at the vertices (see section curvature).
Tangent
An arbitrary line intersects an ellipse at 0, 1, or 2 points, respectively called an exterior line, tangent and secant. Through any point of an ellipse there is a unique tangent. The tangent at a point of the ellipse has the coordinate equation:
A vector parametric equation of the tangent is:
Proof: Let be a point on an ellipse and be the equation of any line containing . Inserting the line's equation into the ellipse equation and respecting yields:
 Then line and the ellipse have only point in common, and is a tangent. The tangent direction has perpendicular vector , so the tangent line has equation for some . Because is on the tangent and the ellipse, one obtains .
 Then line has a second point in common with the ellipse, and is a secant.
Using (1) one finds that is a tangent vector at point , which proves the vector equation.
If and are two points of the ellipse such that , then the points lie on two conjugate diameters (see below). (If , the ellipse is a circle and "conjugate" means "orthogonal".)
Shifted ellipse
If the standard ellipse is shifted to have center , its equation is
The axes are still parallel to the x and yaxes.
General ellipse
Main article: Matrix representation of conic sections 
In analytic geometry, the ellipse is defined as a quadric: the set of points of the Cartesian plane that, in nondegenerate cases, satisfy the implicit equation^{[5]}^{[6]}
To distinguish the degenerate cases from the nondegenerate case, let ∆ be the determinant
Then the ellipse is a nondegenerate real ellipse if and only if C∆ < 0. If C∆ > 0, we have an imaginary ellipse, and if ∆ = 0, we have a point ellipse.^{[7]}^{: 63 }
The general equation's coefficients can be obtained from known semimajor axis , semiminor axis , center coordinates , and rotation angle (the angle from the positive horizontal axis to the ellipse's major axis) using the formulae:
These expressions can be derived from the canonical equation
Conversely, the canonical form parameters can be obtained from the generalform coefficients by the equations:^{[3]}
where atan2 is the 2argument arctangent function.
Parametric representation
Standard parametric representation
Using trigonometric functions, a parametric representation of the standard ellipse is:
The parameter t (called the eccentric anomaly in astronomy) is not the angle of with the xaxis, but has a geometric meaning due to Philippe de La Hire (see § Drawing ellipses below).^{[8]}
Rational representation
With the substitution and trigonometric formulae one obtains
and the rational parametric equation of an ellipse
which covers any point of the ellipse except the left vertex .
For this formula represents the right upper quarter of the ellipse moving counterclockwise with increasing The left vertex is the limit
Alternately, if the parameter is considered to be a point on the real projective line , then the corresponding rational parametrization is
Then
Rational representations of conic sections are commonly used in computeraided design (see Bezier curve).
Tangent slope as parameter
A parametric representation, which uses the slope of the tangent at a point of the ellipse can be obtained from the derivative of the standard representation :
With help of trigonometric formulae one obtains:
Replacing and of the standard representation yields:
Here is the slope of the tangent at the corresponding ellipse point, is the upper and the lower half of the ellipse. The vertices, having vertical tangents, are not covered by the representation.
The equation of the tangent at point has the form . The still unknown can be determined by inserting the coordinates of the corresponding ellipse point :
This description of the tangents of an ellipse is an essential tool for the determination of the orthoptic of an ellipse. The orthoptic article contains another proof, without differential calculus and trigonometric formulae.
General ellipse
Another definition of an ellipse uses affine transformations:
 Any ellipse is an affine image of the unit circle with equation .
 Parametric representation
An affine transformation of the Euclidean plane has the form , where is a regular matrix (with nonzero determinant) and is an arbitrary vector. If are the column vectors of the matrix , the unit circle , , is mapped onto the ellipse:
Here is the center and are the directions of two conjugate diameters, in general not perpendicular.
 Vertices
The four vertices of the ellipse are , for a parameter defined by:
(If , then .) This is derived as follows. The tangent vector at point is:
At a vertex parameter , the tangent is perpendicular to the major/minor axes, so:
Expanding and applying the identities gives the equation for
 Area
From Apollonios theorem (see below) one obtains:
The area of an ellipse is
 Semiaxes
With the abbreviations the statements of Apollonios's theorem can be written as:
 Implicit representation
Solving the parametric representation for by Cramer's rule and using , one obtains the implicit representation
Conversely: If the equation
 with
of an ellipse centered at the origin is given, then the two vectors
Example: For the ellipse with equation the vectors are
 Rotated Standard ellipse
For one obtains a parametric representation of the standard ellipse rotated by angle :
 Ellipse in space
The definition of an ellipse in this section gives a parametric representation of an arbitrary ellipse, even in space, if one allows to be vectors in space.
Polar forms
Polar form relative to center
In polar coordinates, with the origin at the center of the ellipse and with the angular coordinate measured from the major axis, the ellipse's equation is^{[7]}^{: 75 }
Polar form relative to focus
If instead we use polar coordinates with the origin at one focus, with the angular coordinate still measured from the major axis, the ellipse's equation is
where the sign in the denominator is negative if the reference direction points towards the center (as illustrated on the right), and positive if that direction points away from the center.
The angle is called the true anomaly of the point. The numerator is the semilatus rectum.
Eccentricity and the directrix property
Each of the two lines parallel to the minor axis, and at a distance of from it, is called a directrix of the ellipse (see diagram).
 For an arbitrary point of the ellipse, the quotient of the distance to one focus and to the corresponding directrix (see diagram) is equal to the eccentricity:
The proof for the pair follows from the fact that and satisfy the equation
The second case is proven analogously.
The converse is also true and can be used to define an ellipse (in a manner similar to the definition of a parabola):
 For any point (focus), any line (directrix) not through , and any real number with the ellipse is the locus of points for which the quotient of the distances to the point and to the line is that is:
The extension to , which is the eccentricity of a circle, is not allowed in this context in the Euclidean plane. However, one may consider the directrix of a circle to be the line at infinity in the projective plane.
(The choice yields a parabola, and if , a hyperbola.)
 Proof
Let , and assume is a point on the curve. The directrix has equation . With , the relation produces the equations
 and
The substitution yields
This is the equation of an ellipse (), or a parabola (), or a hyperbola (). All of these nondegenerate conics have, in common, the origin as a vertex (see diagram).
If , introduce new parameters so that , and then the equation above becomes
which is the equation of an ellipse with center , the xaxis as major axis, and the major/minor semi axis .
 Construction of a directrix
Because of point of directrix (see diagram) and focus are inverse with respect to the circle inversion at circle (in diagram green). Hence can be constructed as shown in the diagram. Directrix is the perpendicular to the main axis at point .
 General ellipse
If the focus is and the directrix , one obtains the equation
(The right side of the equation uses the Hesse normal form of a line to calculate the distance .)
Focustofocus reflection property
An ellipse possesses the following property:
 The normal at a point bisects the angle between the lines .
 Proof
Because the tangent line is perpendicular to the normal, an equivalent statement is that the tangent is the external angle bisector of the lines to the foci (see diagram). Let be the point on the line with distance to the focus , where is the semimajor axis of the ellipse. Let line be the external angle bisector of the lines and Take any other point on By the triangle inequality and the angle bisector theorem, therefore must be outside the ellipse. As this is true for every choice of only intersects the ellipse at the single point so must be the tangent line.
 Application
The rays from one focus are reflected by the ellipse to the second focus. This property has optical and acoustic applications similar to the reflective property of a parabola (see whispering gallery).
Conjugate diameters
Definition of conjugate diameters
Main article: Conjugate diameters 
A circle has the following property:
 The midpoints of parallel chords lie on a diameter.
An affine transformation preserves parallelism and midpoints of line segments, so this property is true for any ellipse. (Note that the parallel chords and the diameter are no longer orthogonal.)
 Definition
Two diameters of an ellipse are conjugate if the midpoints of chords parallel to lie on
From the diagram one finds:
 Two diameters of an ellipse are conjugate whenever the tangents at and are parallel to .
Conjugate diameters in an ellipse generalize orthogonal diameters in a circle.
In the parametric equation for a general ellipse given above,
any pair of points belong to a diameter, and the pair belong to its conjugate diameter.
For the common parametric representation of the ellipse with equation one gets: The points
 (signs: (+,+) or (−,−) )
 (signs: (−,+) or (+,−) )
 are conjugate and
In case of a circle the last equation collapses to
Theorem of Apollonios on conjugate diameters
For an ellipse with semiaxes the following is true:^{[9]}^{[10]}
 Let and be halves of two conjugate diameters (see diagram) then
 .
 The triangle with sides (see diagram) has the constant area , which can be expressed by , too. is the altitude of point and the angle between the half diameters. Hence the area of the ellipse (see section metric properties) can be written as .
 The parallelogram of tangents adjacent to the given conjugate diameters has the
 Proof
Let the ellipse be in the canonical form with parametric equation
The two points are on conjugate diameters (see previous section). From trigonometric formulae one obtains and
The area of the triangle generated by is
and from the diagram it can be seen that the area of the parallelogram is 8 times that of . Hence
Orthogonal tangents
Main article: Orthoptic (geometry) 
For the ellipse the intersection points of orthogonal tangents lie on the circle .
This circle is called orthoptic or director circle of the ellipse (not to be confused with the circular directrix defined above).
Drawing ellipses
Ellipses appear in descriptive geometry as images (parallel or central projection) of circles. There exist various tools to draw an ellipse. Computers provide the fastest and most accurate method for drawing an ellipse. However, technical tools (ellipsographs) to draw an ellipse without a computer exist. The principle of ellipsographs were known to Greek mathematicians such as Archimedes and Proklos.
If there is no ellipsograph available, one can draw an ellipse using an approximation by the four osculating circles at the vertices.
For any method described below, knowledge of the axes and the semiaxes is necessary (or equivalently: the foci and the semimajor axis). If this presumption is not fulfilled one has to know at least two conjugate diameters. With help of Rytz's construction the axes and semiaxes can be retrieved.
de La Hire's point construction
The following construction of single points of an ellipse is due to de La Hire.^{[11]} It is based on the standard parametric representation of an ellipse:
 Draw the two circles centered at the center of the ellipse with radii and the axes of the ellipse.
 Draw a line through the center, which intersects the two circles at point and , respectively.
 Draw a line through that is parallel to the minor axis and a line through that is parallel to the major axis. These lines meet at an ellipse point (see diagram).
 Repeat steps (2) and (3) with different lines through the center.

de La Hire's method

Animation of the method
Pinsandstring method
The characterization of an ellipse as the locus of points so that sum of the distances to the foci is constant leads to a method of drawing one using two drawing pins, a length of string, and a pencil. In this method, pins are pushed into the paper at two points, which become the ellipse's foci. A string is tied at each end to the two pins; its length after tying is . The tip of the pencil then traces an ellipse if it is moved while keeping the string taut. Using two pegs and a rope, gardeners use this procedure to outline an elliptical flower bed—thus it is called the gardener's ellipse.
A similar method for drawing confocal ellipses with a closed string is due to the Irish bishop Charles Graves.
Paper strip methods
The two following methods rely on the parametric representation (see § Standard parametric representation, above):
This representation can be modeled technically by two simple methods. In both cases center, the axes and semi axes have to be known.
 Method 1
The first method starts with
 a strip of paper of length .
The point, where the semi axes meet is marked by . If the strip slides with both ends on the axes of the desired ellipse, then point traces the ellipse. For the proof one shows that point has the parametric representation , where parameter is the angle of the slope of the paper strip.
A technical realization of the motion of the paper strip can be achieved by a Tusi couple (see animation). The device is able to draw any ellipse with a fixed sum , which is the radius of the large circle. This restriction may be a disadvantage in real life. More flexible is the second paper strip method.

Ellipse construction: paper strip method 1

Ellipses with Tusi couple. Two examples: red and cyan.
A variation of the paper strip method 1 uses the observation that the midpoint of the paper strip is moving on the circle with center (of the ellipse) and radius . Hence, the paperstrip can be cut at point into halves, connected again by a joint at and the sliding end fixed at the center (see diagram). After this operation the movement of the unchanged half of the paperstrip is unchanged.^{[12]} This variation requires only one sliding shoe.

Variation of the paper strip method 1

Animation of the variation of the paper strip method 1
 Method 2
The second method starts with
 a strip of paper of length .
One marks the point, which divides the strip into two substrips of length and . The strip is positioned onto the axes as described in the diagram. Then the free end of the strip traces an ellipse, while the strip is moved. For the proof, one recognizes that the tracing point can be described parametrically by , where parameter is the angle of slope of the paper strip.
This method is the base for several ellipsographs (see section below).
Similar to the variation of the paper strip method 1 a variation of the paper strip method 2 can be established (see diagram) by cutting the part between the axes into halves.

Trammel of Archimedes (principle)

Ellipsograph due to Benjamin Bramer

Variation of the paper strip method 2
Most ellipsograph drafting instruments are based on the second paperstrip method.
Approximation by osculating circles
From Metric properties below, one obtains:
 The radius of curvature at the vertices is:
 The radius of curvature at the covertices is:
The diagram shows an easy way to find the centers of curvature at vertex and covertex , respectively:
 mark the auxiliary point and draw the line segment
 draw the line through , which is perpendicular to the line
 the intersection points of this line with the axes are the centers of the osculating circles.
(proof: simple calculation.)
The centers for the remaining vertices are found by symmetry.
With help of a French curve one draws a curve, which has smooth contact to the osculating circles.
Steiner generation
The following method to construct single points of an ellipse relies on the Steiner generation of a conic section:
 Given two pencils of lines at two points (all lines containing and , respectively) and a projective but not perspective mapping of onto , then the intersection points of corresponding lines form a nondegenerate projective conic section.
For the generation of points of the ellipse one uses the pencils at the vertices . Let be an upper covertex of the ellipse and .
is the center of the rectangle . The side of the rectangle is divided into n equal spaced line segments and this division is projected parallel with the diagonal as direction onto the line segment and assign the division as shown in the diagram. The parallel projection together with the reverse of the orientation is part of the projective mapping between the pencils at and needed. The intersection points of any two related lines and are points of the uniquely defined ellipse. With help of the points the points of the second quarter of the ellipse can be determined. Analogously one obtains the points of the lower half of the ellipse.
Steiner generation can also be defined for hyperbolas and parabolas. It is sometimes called a parallelogram method because one can use other points rather than the vertices, which starts with a parallelogram instead of a rectangle.
As hypotrochoid
The ellipse is a special case of the hypotrochoid when , as shown in the adjacent image. The special case of a moving circle with radius inside a circle with radius is called a Tusi couple.
Inscribed angles and threepoint form
Circles
A circle with equation is uniquely determined by three points not on a line. A simple way to determine the parameters uses the inscribed angle theorem for circles:
 For four points (see diagram) the following statement is true:
 The four points are on a circle if and only if the angles at and are equal.
Usually one measures inscribed angles by a degree or radian θ, but here the following measurement is more convenient:
 In order to measure the angle between two lines with equations one uses the quotient:
Inscribed angle theorem for circles
For four points no three of them on a line, we have the following (see diagram):
 The four points are on a circle, if and only if the angles at and are equal. In terms of the angle measurement above, this means:
At first the measure is available only for chords not parallel to the yaxis, but the final formula works for any chord.
Threepoint form of circle equation
 As a consequence, one obtains an equation for the circle determined by three noncollinear points :
For example, for the threepoint equation is:
 , which can be rearranged to
Using vectors, dot products and determinants this formula can be arranged more clearly, letting :
The center of the circle satisfies:
The radius is the distance between any of the three points and the center.
Ellipses
This section considers the family of ellipses defined by equations with a fixed eccentricity . It is convenient to use the parameter:
and to write the ellipse equation as:
where q is fixed and vary over the real numbers. (Such ellipses have their axes parallel to the coordinate axes: if , the major axis is parallel to the xaxis; if , it is parallel to the yaxis.)
Like a circle, such an ellipse is determined by three points not on a line.
For this family of ellipses, one introduces the following qanalog angle measure, which is not a function of the usual angle measure θ:^{[13]}^{[14]}
 In order to measure an angle between two lines with equations one uses the quotient:
Inscribed angle theorem for ellipses
 Given four points , no three of them on a line (see diagram).
 The four points are on an ellipse with equation if and only if the angles at and are equal in the sense of the measurement above—that is, if
At first the measure is available only for chords which are not parallel to the yaxis. But the final formula works for any chord. The proof follows from a straightforward calculation. For the direction of proof given that the points are on an ellipse, one can assume that the center of the ellipse is the origin.
Threepoint form of ellipse equation
 A consequence, one obtains an equation for the ellipse determined by three noncollinear points :
For example, for and one obtains the threepoint form
 and after conversion
Analogously to the circle case, the equation can be written more clearly using vectors:
where is the modified dot product
Polepolar relation
Any ellipse can be described in a suitable coordinate system by an equation . The equation of the tangent at a point of the ellipse is If one allows point to be an arbitrary point different from the origin, then
 point is mapped onto the line , not through the center of the ellipse.
This relation between points and lines is a bijection.
The inverse function maps
 line onto the point and
 line onto the point
Such a relation between points and lines generated by a conic is called polepolar relation or polarity. The pole is the point; the polar the line.
By calculation one can confirm the following properties of the polepolar relation of the ellipse:
 For a point (pole) on the ellipse, the polar is the tangent at this point (see diagram: ).
 For a pole outside the ellipse, the intersection points of its polar with the ellipse are the tangency points of the two tangents passing (see diagram: ).
 For a point within the ellipse, the polar has no point with the ellipse in common (see diagram: ).
 The intersection point of two polars is the pole of the line through their poles.
 The foci and , respectively, and the directrices and , respectively, belong to pairs of pole and polar. Because they are even polar pairs with respect to the circle , the directrices can be constructed by compass and straightedge (see Inversive geometry).
Polepolar relations exist for hyperbolas and parabolas as well.
Metric properties
All metric properties given below refer to an ellipse with equation

(1) 
except for the section on the area enclosed by a tilted ellipse, where the generalized form of Eq.(1) will be given.
Area
The area enclosed by an ellipse is:

(2) 
where and are the lengths of the semimajor and semiminor axes, respectively. The area formula is intuitive: start with a circle of radius (so its area is ) and stretch it by a factor to make an ellipse. This scales the area by the same factor: ^{[15]} However, using the same approach for the circumference would be fallacious – compare the integrals and . It is also easy to rigorously prove the area formula using integration as follows. Equation (1) can be rewritten as For this curve is the top half of the ellipse. So twice the integral of over the interval will be the area of the ellipse:
The second integral is the area of a circle of radius that is, So
An ellipse defined implicitly by has area
The area can also be expressed in terms of eccentricity and the length of the semimajor axis as (obtained by solving for flattening, then computing the semiminor axis).
So far we have dealt with erect ellipses, whose major and minor axes are parallel to the and axes. However, some applications require tilted ellipses. In chargedparticle beam optics, for instance, the enclosed area of an erect or tilted ellipse is an important property of the beam, its emittance. In this case a simple formula still applies, namely

(3) 
where , are intercepts and , are maximum values. It follows directly from Apollonios's theorem.
Circumference
Further information: Quarter meridian 
The circumference of an ellipse is:
where again is the length of the semimajor axis, is the eccentricity, and the function is the complete elliptic integral of the second kind,
The circumference of the ellipse may be evaluated in terms of using Gauss's arithmeticgeometric mean;^{[16]} this is a quadratically converging iterative method (see here for details).
The exact infinite series is:
Srinivasa Ramanujan gave two close approximations for the circumference in §16 of "Modular Equations and Approximations to ";^{[19]} they are
Arc length
Further information: Meridian arc § Calculation 
More generally, the arc length of a portion of the circumference, as a function of the angle subtended (or x coordinates of any two points on the upper half of the ellipse), is given by an incomplete elliptic integral. The upper half of an ellipse is parameterized by
Then the arc length from to is:
This is equivalent to
where is the incomplete elliptic integral of the second kind with parameter
Some lower and upper bounds on the circumference of the canonical ellipse with are^{[20]}
Here the upper bound is the circumference of a circumscribed concentric circle passing through the endpoints of the ellipse's major axis, and the lower bound is the perimeter of an inscribed rhombus with vertices at the endpoints of the major and the minor axes.
Curvature
The curvature is given by radius of curvature at point :
Radius of curvature at the two vertices and the centers of curvature:
Radius of curvature at the two covertices and the centers of curvature:
In triangle geometry
Ellipses appear in triangle geometry as
 Steiner ellipse: ellipse through the vertices of the triangle with center at the centroid,
 inellipses: ellipses which touch the sides of a triangle. Special cases are the Steiner inellipse and the Mandart inellipse.
As plane sections of quadrics
Ellipses appear as plane sections of the following quadrics:
 Ellipsoid
 Elliptic cone
 Elliptic cylinder
 Hyperboloid of one sheet
 Hyperboloid of two sheets

Ellipsoid

Elliptic cone

Elliptic cylinder

Hyperboloid of one sheet

Hyperboloid of two sheets
Applications
Physics
Elliptical reflectors and acoustics
See also: Fresnel zone 
If the water's surface is disturbed at one focus of an elliptical water tank, the circular waves of that disturbance, after reflecting off the walls, converge simultaneously to a single point: the second focus. This is a consequence of the total travel length being the same along any wallbouncing path between the two foci.
Similarly, if a light source is placed at one focus of an elliptic mirror, all light rays on the plane of the ellipse are reflected to the second focus. Since no other smooth curve has such a property, it can be used as an alternative definition of an ellipse. (In the special case of a circle with a source at its center all light would be reflected back to the center.) If the ellipse is rotated along its major axis to produce an ellipsoidal mirror (specifically, a prolate spheroid), this property holds for all rays out of the source. Alternatively, a cylindrical mirror with elliptical crosssection can be used to focus light from a linear fluorescent lamp along a line of the paper; such mirrors are used in some document scanners.
Sound waves are reflected in a similar way, so in a large elliptical room a person standing at one focus can hear a person standing at the other focus remarkably well. The effect is even more evident under a vaulted roof shaped as a section of a prolate spheroid. Such a room is called a whisper chamber. The same effect can be demonstrated with two reflectors shaped like the end caps of such a spheroid, placed facing each other at the proper distance. Examples are the National Statuary Hall at the United States Capitol (where John Quincy Adams is said to have used this property for eavesdropping on political matters); the Mormon Tabernacle at Temple Square in Salt Lake City, Utah; at an exhibit on sound at the Museum of Science and Industry in Chicago; in front of the University of Illinois at Urbana–Champaign Foellinger Auditorium; and also at a side chamber of the Palace of Charles V, in the Alhambra.
Planetary orbits
Main article: Elliptic orbit 
In the 17th century, Johannes Kepler discovered that the orbits along which the planets travel around the Sun are ellipses with the Sun [approximately] at one focus, in his first law of planetary motion. Later, Isaac Newton explained this as a corollary of his law of universal gravitation.
More generally, in the gravitational twobody problem, if the two bodies are bound to each other (that is, the total energy is negative), their orbits are similar ellipses with the common barycenter being one of the foci of each ellipse. The other focus of either ellipse has no known physical significance. The orbit of either body in the reference frame of the other is also an ellipse, with the other body at the same focus.
Keplerian elliptical orbits are the result of any radially directed attraction force whose strength is inversely proportional to the square of the distance. Thus, in principle, the motion of two oppositely charged particles in empty space would also be an ellipse. (However, this conclusion ignores losses due to electromagnetic radiation and quantum effects, which become significant when the particles are moving at high speed.)
For elliptical orbits, useful relations involving the eccentricity are:
where