For faster navigation, this Iframe is preloading the Wikiwand page for Electrical aerosol spectrometer.

Electrical aerosol spectrometer

Electrical aerosol spectrometry (EAS) is a technique for measurement of the number-size distribution of aerosol using a combination of electrical charging and multiple solid state electrometer detectors. The technique combines both diffusion and field charging regimes to cover the diameter range 10 nm to 10 μm.[1][2]

Subsequent developments of the technique enable measurements faster than 1 Hz, although in each case with a reduced size range.[3][4]

Aerosol charging

[edit]

High charging efficiency allows sufficient charge to be placed on individual particles that the use of electrometer detectors is practicable, while the use of parallel electrometer detectors allows real time measurement of the size/number spectrum with output data as fast as 0.25 Hz.

Unlike SMPS-type devices, multiple charging is an inherent issue across almost the entire size range of EAS-type devices. Accurate characterization of the electrical charging of the aerosol is therefore an essential component of device design.[5]

Calibration

[edit]

Techniques for the traceable calibration of such devices are established, and result in good agreement (subject to suitable signal levels) with slower but more sensitive scanning mobility particle sizers.[6]

Applications

[edit]

Applications include the measurement of engine exhaust, cigarette smoke, and ambient/atmospheric studies.

The technique is particularly appropriate for situations where aerosol concentrations are changing on a timescale of 1 s or faster.

References

[edit]
  1. ^ Tammet; et al. (1998). "Electrical aerosol spectrometer of Tartu University". Journal of Aerosol Science. 29: S427–S428. Bibcode:1998JAerS..29S.427T. doi:10.1016/S0021-8502(98)00595-3.
  2. ^ Tammet; et al. (2002). "Electrical aerosol spectrometer of Tartu University". Atmospheric Research. 62 (3–4): 315–324. Bibcode:2002AtmRe..62..315T. doi:10.1016/S0169-8095(02)00017-0.
  3. ^ Reavell, K (2002). "Fast Response Classification of Fine Aerosols with a Differential Mobility Spectrometer" (PDF). UK Aerosol Society, Annual Conference. Retrieved 13 March 2015.
  4. ^ Johnson; et al. (2004). "A New Electrical Mobility Particle Sizer Spectrometer for Engine Exhaust Particle Measurements". SAE World Congress. doi:10.4271/2004-01-1341. Retrieved 13 March 2015.
  5. ^ Biskos; et al. (2005). "Description and Theoretical Analysis of a Differential Mobility Spectrometer" (PDF). Aerosol Science and Technology. 39: 527–541. Bibcode:2005AerST..39..527B. doi:10.1080/027868291004832. Archived from the original (PDF) on 2 April 2015. Retrieved 13 March 2015.
  6. ^ Symonds, Jonathan. "Calibration of Fast Response Differential Mobility Spectrometers" (PDF). National Physical Laboratory, UK. Retrieved 13 March 2015.
{{bottomLinkPreText}} {{bottomLinkText}}
Electrical aerosol spectrometer
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?