For faster navigation, this Iframe is preloading the Wikiwand page for Debus–Radziszewski imidazole synthesis.

Debus–Radziszewski imidazole synthesis

Debus–Radziszewski imidazole synthesis
Named after Heinrich Debus
Bronisław Leonard Radziszewski [de]
Reaction type Ring forming reaction

The Debus–Radziszewski imidazole synthesis is a multi-component reaction used for the synthesis of imidazoles from a 1,2-dicarbonyl, an aldehyde, and ammonia or a primary amine. The method is used commercially to produce several imidazoles.[1] The process is an example of a multicomponent reaction.

The reaction can be viewed as occurring in two stages. In the first stage, the dicarbonyl and two ammonia molecules condense with the two carbonyl groups to give a diimine:

Debus-Radziszewski imidazole synthesis part I

In the second stage, this diimine condenses with the aldehyde:

Debus-Radziszewski imidazole synthesis part I

However, the actual reaction mechanism is not certain.[2][3]

This reaction is named after Heinrich Debus[4] and Bronisław Leonard Radziszewski [de].[5][6]

A modification of this general method, where one equivalent of ammonia is replaced by an amine, affords N-substituted imidazoles in good yields.[3]

Arduengo imidazoles

This reaction has been applied to the synthesis of a range of 1,3-dialkylimidazolium ionic liquids by using various readily available alkylamines.[6]

References

  1. ^ Ebel, K., Koehler, H., Gamer, A. O., & Jäckh, R. "Imidazole and Derivatives." In Ullmann’s Encyclopedia of Industrial Chemistry; 2002 Wiley-VCH, doi:10.1002/14356007.a13_661
  2. ^ Crouch, R. David; Howard, Jessica L.; Zile, Jennifer L.; Barker, Kathryn H. (2006). "Microwave-Mediated Synthesis of Lophine: Developing a Mechanism To Explain a Product". J. Chem. Educ. 83 (11): 1658–1660. doi:10.1021/ed083p1658.
  3. ^ a b Gelens, E.; De Kanter, F. J. J.; Schmitz, R. F.; Sliedregt, L. A. J. M.; Van Steen, B. J.; Kruse, Chris G.; Leurs, R.; Groen, M. B.; Orru, R. V. A. (2006). "Efficient library synthesis of imidazoles using a multicomponent reaction and microwave irradiation". Molecular Diversity. 10: 17–22. doi:10.1007/s11030-006-8695-3.
  4. ^ Debus, Heinrich (1858). "Ueber die Einwirkung des Ammoniaks auf Glyoxal". Justus Liebigs Annalen der Chemie. 107 (2): 199–208. doi:10.1002/jlac.18581070209.
  5. ^ Radzisewski, Br. (1882). "Ueber Glyoxalin und seine Homologe". Berichte der deutschen chemischen Gesellschaft. 15 (2): 2706–2708. doi:10.1002/cber.188201502245.
  6. ^ a b Damilano, Giacomo; Kalebić, Demian; Binnemans, Koen; Dehaen, Wim (2020). "One-pot synthesis of symmetric imidazolium ionic liquids N,N-disubstituted with long alkyl chains". RSC Adv. 10: 21071–21081. doi:10.1039/D0RA03358H. PMC 9054310.
{{bottomLinkPreText}} {{bottomLinkText}}
Debus–Radziszewski imidazole synthesis
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?