For faster navigation, this Iframe is preloading the Wikiwand page for Cyanogen azide.

Cyanogen azide

Cyanogen azide
Names
Preferred IUPAC name
Carbononitridic azide[1]
Other names
Cyano azide
Identifiers
3D model (JSmol)
UNII
  • InChI=1S/CN4/c2-1-4-5-3
    Key: KWEDUNSJJZVRKR-UHFFFAOYSA-N
  • C(#N)N=[N+]=[N-]
Properties
N3CN
Molar mass 68.039 g·mol−1
Appearance Colourless oily liquid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cyanogen azide is a chemical compound with the chemical formula CN4, or more precisely N=N+=N−C≡N. It is an azide compound of carbon and nitrogen. It is an oily, colourless liquid at room temperature.[2] It is a highly explosive chemical that is soluble in most organic solvents, and normally handled in dilute solution in this form.[2][3][4] It was first synthesised by F. D. Marsh at DuPont in the early 1960s.[2][5] There had been earlier claims of discovering it as a crystalline solid, which were incorrect.[6]

Cyanogen azide is a primary explosive, although it is far too unstable for practical use as an explosive and is extremely dangerous outside dilute solution.[7][8] Its use in chemistry has been as a reagent prepared in situ for use in the synthesis of chemicals such as diaminotetrazoles, either in dilute solution or as a gas at reduced pressure.[9][10][11][6][12][13][14] It can be synthesised at below room temperature from the reaction of sodium azide with either cyanogen chloride[2] or cyanogen bromide,[5] dissolved in a solvent such as acetonitrile; this reaction must be done with care due to the production of shock-sensitive byproducts from trace moisture.[5][12]

References

[edit]
  1. ^ International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 799. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
  2. ^ a b c d Marsh, F. D.; Hermes, M. E. (October 1964). "Cyanogen Azide". Journal of the American Chemical Society. 86 (20): 4506–4507. doi:10.1021/ja01074a071.
  3. ^ Goldsmith, Derek (2001). "Cyanogen azide". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rc268. ISBN 978-0471936237.
  4. ^ Houben-Weyl Methods of Organic Chemistry Vol. E 21e, 4th Edition Supplement: Stereoselective Synthesis: Bond Formation, C-N, C-O, C-P, C-S, C-Se, C-Si, C-Sn, C-Te. Thieme. 14 May 2014. p. 5414. ISBN 978-3-13-182284-0.
  5. ^ a b c Marsh, F. D. (September 1972). "Cyanogen azide". The Journal of Organic Chemistry. 37 (19): 2966–2969. doi:10.1021/jo00984a012.
  6. ^ a b Lowe, Derek. "Things I Won't Work With: Cyanogen Azide". Science Translational Medicine. American Association for the Advancement of Science. Retrieved 27 April 2017.
  7. ^ Robert Matyáš; Jiří Pachman (12 March 2013). Primary Explosives. Springer Science & Business Media. p. 111. ISBN 978-3-642-28436-6.
  8. ^ Michael L. Madigan (13 September 2017). First Responders Handbook: An Introduction, Second Edition. CRC Press. p. 170. ISBN 978-1-351-61207-4.
  9. ^ Gordon W. Gribble; J. Joule (3 September 2009). Progress in Heterocyclic Chemistry. Elsevier. pp. 250–1. ISBN 978-0-08-096516-1.
  10. ^ Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles. Thieme. 14 May 2014. p. 2082. ISBN 978-3-13-178081-2.
  11. ^ Barry M. Trost (1991). Oxidation. Elsevier. p. 479. ISBN 978-0-08-040598-8.
  12. ^ a b Joo, Young-Hyuk; Twamley, Brendan; Garg, Sonali; Shreeve, Jean'ne M. (4 August 2008). "Energetic Nitrogen-Rich Derivatives of 1,5-Diaminotetrazole". Angewandte Chemie International Edition. 47 (33): 6236–6239. doi:10.1002/anie.200801886. PMID 18615414.
  13. ^ Audran, Gérard; Adiche, Chiaa; Brémond, Paul; El Abed, Douniazad; Hamadouche, Mohammed; Siri, Didier; Santelli, Maurice (March 2017). "Cycloaddition of sulfonyl azides and cyanogen azide to enamines. Quantum-chemical calculations concerning the spontaneous rearrangement of the adduct into ring-contracted amidines". Tetrahedron Letters. 58 (10): 945–948. doi:10.1016/j.tetlet.2017.01.081.
  14. ^ Energetic Materials, Volume 1. Plenum Press. pp. 68–9. ISBN 9780306370762.
[edit]
{{bottomLinkPreText}} {{bottomLinkText}}
Cyanogen azide
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?