For faster navigation, this Iframe is preloading the Wikiwand page for Conservativity.


In formal semantics conservativity is a proposed linguistic universal which states that any determiner must obey the equivalence . For instance, the English determiner "every" can be seen to be conservative by the equivalence of the following two sentences, schematized in generalized quantifier notation to the right.[1][2][3]

  1. Every aardvark bites.
  2. Every aardvark is an aardvark that bites.

Conceptually, conservativity can be understood as saying that the elements of which are not elements of are not relevant for evaluating the truth of the determiner phrase as a whole. For instance, truth of the first sentence above does not depend on which biting non-aardvarks exist.[1][2][3]

Conservativity is significant to semantic theory because there are many logically possible determiners which are not attested as denotations of natural language expressions. For instance, consider the imaginary determiner defined so that is true iff . If there are 50 biting aardvarks, 50 non-biting aardvarks, and millions of non-aardvark biters, will be false but will be true.[1][2][3]

Some potential counterexamples to conservativity have been observed, notably, the English expression "only". This expression has been argued to not be a determiner since it can stack with bona fide determiners and can combine with non-nominal constituents such as verb phrases.[4]

  1. Only some aardvarks bite.
  2. This aardvark will only [VP bite playfully.]

Different analyses have treated conservativity as a constraint on the lexicon, a structural constraint arising from the architecture of the syntax-semantics interface, as well as constraint on learnability.[5][6][7]

See also


  1. ^ a b c Dag, Westerståhl (2016). "Generalized Quantifiers". In Aloni, Maria; Dekker, Paul (eds.). Cambridge Handbook of Formal Semantics. Cambridge University Press. ISBN 978-1-107-02839-5.
  2. ^ a b c Gamut, L.T.F. (1991). Logic, Language and Meaning: Intensional Logic and Logical Grammar. University of Chicago Press. pp. 245–249. ISBN 0-226-28088-8.
  3. ^ a b c Barwise, Jon; Cooper, Robin (1981). "Generalized Quantifiers and Natural Language". Linguistics and Philosophy. 4 (2): 159–219. doi:10.1007/BF00350139.
  4. ^ von Fintel, Kai (1994). Restrictions on quantifier domains (PhD). University of Massachusetts Amherst.
  5. ^ Hunter, Tim; Lidz, Jeffrey (2013). "Conservativity and learnability of determiners". Journal of Semantics. 30 (3): 315–334. doi:10.1093/jos/ffs014.
  6. ^ Romoli, Jacopo (2015). "A structural account of conservativity". Semantics-Syntax Interface. 2 (1).
  7. ^ Steinert-Threlkeld, Shane; Szymanik, Jakub (2019). "Learnability and semantic universals". Semantics and Pragmatics. 12 (4): 1. doi:10.3765/sp.12.4. hdl:11572/364230. S2CID 54087074.
{{bottomLinkPreText}} {{bottomLinkText}}
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!

Your input will affect cover photo selection, along with input from other users.


Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?