For faster navigation, this Iframe is preloading the Wikiwand page for Bundorf analysis.

Bundorf analysis

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Bundorf analysis" – news · newspapers · books · scholar · JSTOR (June 2018) (Learn how and when to remove this message)

A Bundorf analysis is a measure of the characteristics of a vehicle that govern its understeer balance. The understeer is measured in units of degrees of additional yaw per g of lateral acceleration.

An imaginary example

Front Rear
deg/g deg/g
Load transfer effect and cornering stiffness of tire 8.0 7.0
Aligning torque 0.2 -0.2
Roll camber 1.2 0.0
Roll steer 0.6 -0.4
Fy Compliance steer 0.3 -0.1
SAT compliance steer 0.7 0.6
Total Axle Cornering compliance 11.0 6.9

Hence the total under-steer is 11.0 deg/g minus 6.9 deg/g, or 4.1 deg/g.

Negative values are over-steering, positive values are under-steering, for that axle. If the under-steer contribution of the rear axle is greater than that of the front axle you get negative under-steer, which is known as oversteer. The analysis is only applicable while the parameters remain constant, and thus only up to about 0.4 g.

Explanation of terms

Load transfer effect and cornering stiffness of tire. As load transfers across the vehicle the tire's ability to provide cornering force for a given slip angle changes. The latter is known as the cornering stiffness of the tire. See also Tire load sensitivity

Aligning torque. The tire does not just generate a lateral force, it generates a torque as well. This tends to rotate the vehicle as a whole.

Roll camber. As the vehicle rolls the kinematics of the suspension provide a change in the camber of the tire. This generates a force known as camber thrust.

Roll steer. As the vehicle rolls the kinematics of the suspension provide a change in the steer angle of the tire. This generates a cornering force in the normal way.

Fy compliance steer. The lateral force at the contact patch causes the wheel to rotate about the steer axis, generating a steer angle.

SAT compliance steer. The aligning torque directly twists the wheel on the compliances in the suspension, generating a steer angle.

Under-steer. In this case, the tendency for an axle or vehicle to turn outwards from a corner.

See also


Bundorf, R.T. and Leffert, R.L. (1976) 'Cornering compliance concept for description of vehicle. directional control properties', SAE paper 760713

{{bottomLinkPreText}} {{bottomLinkText}}
Bundorf analysis
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!

Your input will affect cover photo selection, along with input from other users.


Get ready for Wikiwand 2.0 ๐ŸŽ‰! the new version arrives on September 1st! Don't want to wait?