For faster navigation, this Iframe is preloading the Wikiwand page for Adjoint bundle.

Adjoint bundle

In mathematics, an adjoint bundle [1] is a vector bundle naturally associated to any principal bundle. The fibers of the adjoint bundle carry a Lie algebra structure making the adjoint bundle into a (nonassociative) algebra bundle. Adjoint bundles have important applications in the theory of connections as well as in gauge theory.

Formal definition

[edit]

Let G be a Lie group with Lie algebra , and let P be a principal G-bundle over a smooth manifold M. Let

be the (left) adjoint representation of G. The adjoint bundle of P is the associated bundle

The adjoint bundle is also commonly denoted by . Explicitly, elements of the adjoint bundle are equivalence classes of pairs [p, X] for pP and X such that

for all gG. Since the structure group of the adjoint bundle consists of Lie algebra automorphisms, the fibers naturally carry a Lie algebra structure making the adjoint bundle into a bundle of Lie algebras over M.

Restriction to a closed subgroup

[edit]

Let G be any Lie group with Lie algebra , and let H be a closed subgroup of G. Via the (left) adjoint representation of G on , G becomes a topological transformation group of . By restricting the adjoint representation of G to the subgroup H,

also H acts as a topological transformation group on . For every h in H, is a Lie algebra automorphism.

Since H is a closed subgroup of the Lie group G, the homogeneous space M=G/H is the base space of a principal bundle with total space G and structure group H. So the existence of H-valued transition functions is assured, where is an open covering for M, and the transition functions form a cocycle of transition function on M. The associated fibre bundle is a bundle of Lie algebras, with typical fibre , and a continuous mapping induces on each fibre the Lie bracket.[2]

Properties

[edit]

Differential forms on M with values in are in one-to-one correspondence with horizontal, G-equivariant Lie algebra-valued forms on P. A prime example is the curvature of any connection on P which may be regarded as a 2-form on M with values in .

The space of sections of the adjoint bundle is naturally an (infinite-dimensional) Lie algebra. It may be regarded as the Lie algebra of the infinite-dimensional Lie group of gauge transformations of P which can be thought of as sections of the bundle where conj is the action of G on itself by (left) conjugation.

If is the frame bundle of a vector bundle , then has fibre the general linear group (either real or complex, depending on ) where . This structure group has Lie algebra consisting of all matrices , and these can be thought of as the endomorphisms of the vector bundle . Indeed there is a natural isomorphism .

Notes

[edit]
  1. ^ Kolář, Michor & Slovák 1993, pp. 161, 400
  2. ^ Kiranagi, B.S. (1984), "Lie algebra bundles and Lie rings", Proc. Natl. Acad. Sci. India A, 54: 38–44

References

[edit]
{{bottomLinkPreText}} {{bottomLinkText}}
Adjoint bundle
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?