For faster navigation, this Iframe is preloading the Wikiwand page for One-dimensional space.

One-dimensional space

The number line

A one-dimensional space (1D space) is a mathematical space in which location can be specified with a single coordinate. An example is the number line, each point of which is described by a single real number.[1]

Any straight line or smooth curve is a one-dimensional space, regardless of the dimension of the ambient space in which the line or curve is embedded. Examples include the circle on a plane, or a parametric space curve.

In algebraic geometry there are several structures that are one-dimensional spaces but are usually referred to by more specific terms. Any field is a one-dimensional vector space over itself. The projective line over denoted is a one-dimensional space. In particular, if the field is the complex numbers then the complex projective line is one-dimensional with respect to (but is sometimes called the Riemann sphere, as it is a model of the sphere, two-dimensional with respect to real-number coordinates).

For every eigenvector of a linear transformation T on a vector space V, there is a one-dimensional space AV generated by the eigenvector such that T(A) = A, that is, A is an invariant set under the action of T.[2]

In Lie theory, a one-dimensional subspace of a Lie algebra is mapped to a one-parameter group under the Lie group–Lie algebra correspondence.[3]

More generally, a ring is a length-one module over itself. Similarly, the projective line over a ring is a one-dimensional space over the ring. In case the ring is an algebra over a field, these spaces are one-dimensional with respect to the algebra, even if the algebra is of higher dimensionality.

Coordinate systems in one-dimensional space

[edit]

One dimensional coordinate systems include the number line.

See also

[edit]

References

[edit]
  1. ^ Гущин, Д. Д. "Пространство как математическое понятие" (in Russian). fmclass.ru. Retrieved 2015-06-06.
  2. ^ Peter Lancaster & Miron Tismenetsky (1985) The Theory of Matrices, second edition, page 147, Academic Press ISBN 0-12-435560-9
  3. ^ P. M. Cohn (1961) Lie Groups, page 70, Cambridge Tracts in Mathematics and Mathematical Physics # 46
{{bottomLinkPreText}} {{bottomLinkText}}
One-dimensional space
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?