For faster navigation, this Iframe is preloading the Wikiwand page for sl(2,C).

sl(2,C)

aus Wikipedia, der freien Enzyklopädie

In der Mathematik ist die Lie-Algebra der Prototyp einer komplexen einfachen Lie-Algebra. Die ist eine dreidimensionale, komplexe, einfache Lie-Algebra. Durch diese Eigenschaften ist sie als Lie-Algebra bereits eindeutig identifiziert.

Die ist die dreidimensionale Lie-Algebra der speziellen linearen Gruppe . Sie ist über dem komplexen Zahlenkörper definiert und hat zwei reelle Formen, die Lie-Algebra und die Lie-Algebra .

Die Gruppe spielt insbesondere in der Speziellen Relativitätstheorie eine Rolle, da sie die einfach zusammenhängende Überlagerung der eigentlichen orthochronen Lorentztransformationen ist.

Kommutator-Relationen

[Bearbeiten | Quelltext bearbeiten]

Wir betrachten den durch die Basis x, y, h aufgespannten Vektorraum . Die ist dann festgelegt durch folgende Kommutator-Relationen:

Eine häufig verwendete Realisierung erfolgt durch folgende spurlose 2×2-Matrizen:

Alternative Realisierung durch das Kreuzprodukt

[Bearbeiten | Quelltext bearbeiten]

Durch die Definition des Kreuzproduktes in und der folgenden Vektoren

ergibt sich die gleiche Algebra:

ist eine einfache (insbesondere halbeinfache) Lie-Algebra.

Beweis: Sei ein nichttriviales Ideal in und sei mit . Wenn , dann , damit und , also . Also können wir oder annehmen, o. B. d. A . Aus folgt dann und damit auch , also wieder .

Struktur der Lie-Algebra sl(2,C)

[Bearbeiten | Quelltext bearbeiten]

Die Killing-Form von lässt sich explizit durch die Formel

berechnen, es ist also

Cartan-Involution

[Bearbeiten | Quelltext bearbeiten]

Eine maximal kompakte Untergruppe der Lie-Gruppe ist , ihre Lie-Algebra wird von und aufgespannt.

Eine Cartan-Involution von ist gegeben durch

.

ist ihr Eigenraum zum Eigenwert . Man erhält die Cartan-Zerlegung

,

wobei der Eigenraum zum Eigenwert ist.

Iwasawa-Zerlegung

[Bearbeiten | Quelltext bearbeiten]

Eine Iwasawa-Zerlegung von ist

mit .

Die hat zwei reelle Formen: ihre kompakte reelle Form ist , ihre spaltbare reelle Form ist .

Cartan-Unteralgebren

[Bearbeiten | Quelltext bearbeiten]

Eine maximale abelsche Unteralgebra ist

.

ist eine Cartan-Unteralgebra.

Jede Cartan-Unteralgebra ist zu konjugiert, d. h., sie ist von der Form

für ein .

Das Wurzelsystem zu ist

.

Die dualen Wurzeln sind

.

Die zugehörigen Wurzelräume sind

.

Die Weyl-Gruppe ist die symmetrische Gruppe .

  • Nicolas Perrin: The Lie Algebra PDF
  • Abhinav Shrestha: Representations of semisimple Lie algebras PDF
{{bottomLinkPreText}} {{bottomLinkText}}
sl(2,C)
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?