For faster navigation, this Iframe is preloading the Wikiwand page for Newtonidentitäten.

Newtonidentitäten

aus Wikipedia, der freien Enzyklopädie

In der Mathematik, spezieller der Algebra, verknüpfen die Newtonidentitäten zwei fundamentale Typen symmetrischer Polynome in einer Anzahl n von Variablen , die elementarsymmetrischen Polynome

,

und die Potenzsummen

,

Diese Identitäten werden allgemein auf Überlegungen von Isaac Newton um 1666 zurückgeführt, sie finden sich aber auch schon bei Albert Girard im Jahre 1629. Anwendungen dieser Identitäten finden sich in der Galoistheorie, der Invariantentheorie, der Gruppentheorie, Kombinatorik, aber auch außerhalb der Mathematik zum Beispiel in der allgemeinen Relativitätstheorie.

Herleitung mittels formaler Potenzreihen

[Bearbeiten | Quelltext bearbeiten]

Sei T die Variable im Ring der formalen Potenzreihen . Dann gilt analog zum Satz von Vieta

.

Da das Polynom p(T) einen konstanten Koeffizienten 1 hat, ist es im Ring der formalen Potenzreihen invertierbar. Für die logarithmische Ableitung ergibt sich

.

Die Quotienten auf der rechten Seite existieren ebenfalls als formale Potenzreihen, sie ergeben sich als geometrische Reihen. Somit gilt

.

Dies kann nun umgeformt werden zu

.

Durch Vergleich gleicher Potenzen von T auf beiden Seiten ergibt sich ein Gleichungssystem zur Bestimmung der elementarsymmetrischen Polynome aus den Potenzreihen und umgekehrt,

Diese Beziehungen lassen sich mittels Ausführen der Division formaler Potenzreihen in p'(T)/p(T) nach den Potenzsummen auflösen, es gilt

Umgekehrt gilt, dass der Quotient aus Ableitung und Funktion die Ableitung des Logarithmus ist, somit gilt nach Integration und Anwendung der Exponentialfunktion , woraus sich nach Koeffizientenvergleich die folgenden Beziehungen ergeben.

  • Jean-Pierre Tignol: Galois’s theory of algebraic equations. World Scientific, Singapore 2001, ISBN 981-02-4541-6, doi:10.1142/9789812384904 (historisch orientierte Einführung in die Galois-Theorie).
  • Peter J. Cameron: Permutation Groups. Cambridge University Press, 1999, ISBN 0-521-65378-9 (Einführung in Permutationsgruppen, einschließlich des Zyklusindex von Pólya, oligomorphe Permutationsgruppen und deren Verbindung zur mathematischen Logik).
  • Alan Tucker: Applied Combinatorics. Wiley, New York 1984, ISBN 0-471-86371-8 (eines der elementarsten und verständlichsten Lehrbücher, die die Aufzählungsformel von Pólya und Zyklusindexpolynome darstellen).
{{bottomLinkPreText}} {{bottomLinkText}}
Newtonidentitäten
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?