For faster navigation, this Iframe is preloading the Wikiwand page for Einheitengruppe.

Einheitengruppe

aus Wikipedia, der freien Enzyklopädie

In der Mathematik ist die Einheitengruppe eines Rings mit Einselement die Menge aller multiplikativ invertierbaren Elemente. Sie ist mit der Ringmultiplikation eine Gruppe.

Die Einheitengruppen von (unitären) assoziativen Algebren können als Verallgemeinerung der allgemeinen linearen Gruppe angesehen werden.

Sei ein Ring mit 1. Die Menge aller multiplikativ invertierbaren Elemente (Einheiten) von bildet mit der Ringmultiplikation eine Gruppe. Sie wird Einheitengruppe von genannt. Man schreibt die Einheitengruppe meist als oder als . Die Definition lässt sich auf Monoide übertragen.

Eigenschaften und verwandte Begriffe

[Bearbeiten | Quelltext bearbeiten]
  • Ein kommutativer Ring mit 1, dessen Einheitengruppe aus allen Elementen außer der Null besteht, ist bereits ein Körper.
  • Ein kommutativer Ring mit 1 ist genau dann lokal, wenn das Komplement der Einheitengruppe ein Ideal ist.

Die Einheitengruppe eines Körpers

[Bearbeiten | Quelltext bearbeiten]

Die Einheitengruppe (auch ) eines Körpers heißt multiplikative Gruppe. Sie ist isomorph zur linearen algebraischen Gruppe

,

also Untergruppe der allgemeinen linearen Gruppe vom Grad 2.

Jede endliche multiplikative Untergruppe eines kommutativen Körpers ist zyklisch (s. Einheitswurzel).

  • Die Einheitengruppe des Rings der ganzen Zahlen besteht aus den beiden Elementen 1 und −1.
  • Die Einheitengruppe des Rings der rationalen Zahlen besteht aus allen rationalen Zahlen ungleich der Null, ist also ein Körper.
  • Die Einheitengruppe des Restklassenrings modulo 10 besteht aus den Elementen 1, 3, 7 und 9.
  • Ist eine Primzahl, so gibt es in genau Einheiten.
  • Allgemein: Ist , so gibt es in genau Einheiten. Dabei ist die Euler-Funktion. ist die Anzahl der natürlichen Zahlen, die nicht größer als und teilerfremd zu sind.[1]
  • Die Einheitengruppe des Matrizenrings der -Matrizen mit Koeffizienten in einem Körper heißt allgemeine lineare Gruppe . und sind Lie-Gruppen.
  • Andreas Bartholomé, Josef Rung, Hans Kern: Zahlentheorie für Einsteiger. Vieweg+Teubner, 7. Auflage, 2010, ISBN 978-3-8348-1213-1.
  • Armin Leutbecher: Zahlentheorie. Eine Einführung in die Algebra. Springer, Berlin / Heidelberg / New York 1996, ISBN 3-540-58791-8.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Andreas Bartholomé, Josef Rung, Hans Kern: Zahlentheorie für Einsteiger. Vieweg+Teubner, 7. Auflage, 2010, Seite 113.
{{bottomLinkPreText}} {{bottomLinkText}}
Einheitengruppe
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?