For faster navigation, this Iframe is preloading the Wikiwand page for Heegaard-Zerlegung.

Heegaard-Zerlegung

aus Wikipedia, der freien Enzyklopädie

In der Mathematik sind Heegaard-Zerlegungen ein wichtiges Hilfsmittel der 3-dimensionalen Topologie. Sie sind nach dem dänischen Mathematiker Poul Heegaard benannt.[1]

Eine Heegaard-Zerlegung einer geschlossenen 3-dimensionalen Mannigfaltigkeit besteht aus zwei Henkelkörpern und und einem Homöomorphismus , so dass aus und durch Verkleben mittels entsteht, d. h., man hat einen Homöomorphismus

für die durch

gegebene Relation.

Das Geschlecht der Flächen heißt das Geschlecht der Heegaard-Zerlegung. Die in eingebettete Fläche heißt Heegaard-Fläche der Heegaard-Zerlegung.

Das Heegaard-Geschlecht ist das Minimum des Geschlechts über alle Heegaard-Zerlegungen von . Die Heegaard-Euler-Charakteristik ist das Negative des Maximums der Euler-Charakteristik über alle Heegaard-Flächen, also .

Der Heegaard-Gradient von ist das Infimum über alle endlichen Überlagerungen von , wobei den Grad der Überlagerung bezeichnet.

Aus der Morse-Theorie folgt, dass jede geschlossene orientierbare 3-Mannigfaltigkeit eine Heegaard-Zerlegung besitzt. Alternativ ergibt sich die Existenz von Heegaard-Zerlegungen auch aus der Triangulierbarkeit von 3-Mannigfaltigkeiten, man kann die Umgebung des 1-Skeletts einer Triangulierung als Henkelkörper wählen, sein Komplement ist dann als Umgebung des 1-Skeletts der dualen Triangulierung ebenfalls ein Henkelkörper.

  • Standard-Heegaard-Zerlegung der 3-Sphäre: Seien Henkelkörper vom Geschlecht (d. h. Vollkugeln) und , dann ist .
  • Seien Henkelkörper vom Geschlecht (d. h. Volltori) und , dann ist .
  • Geschlecht-1-Heegaard-Zerlegung der 3-Sphäre: Seien Henkelkörper vom Geschlecht und bilde die Longitude auf den Meridian und den Meridian auf die Longitude ab, dann ist .
  • Standard-Heegaard-Zerlegung der Linsenräume: Seien Henkelkörper vom Geschlecht und sei durch eine beliebige Matrix gegeben, dann ist ein Linsenraum.
  • Heegaard-Zerlegung von Flächenbündeln: Jedes Flächenbündel mit einer Faser vom Geschlecht hat eine Heegaard-Zerlegung vom Geschlecht . Insbesondere ist der Heegaard-Gradient eines Flächenbündels . Weil nach dem Satz von Agol jede 3-Mannigfaltigkeit von einem Flächenbündel endlich überlagert wird, ist damit der Heegaard-Gradient stets trivial.

Stabilisierungen, Reduzibilität, Irreduzibilität

[Bearbeiten | Quelltext bearbeiten]

Aus einer Heegaard-Zerlegung einer Mannigfaltigkeit kann man durch Stabilisierung (Ankleben zusätzlicher Henkel, für die jeweils Longituden auf Meridiane und Meridiane auf Longituden abgebildet werden) weitere Heegard-Zerlegungen derselben 3-Mannigfaltigkeit mit Heegaard-Flächen höheren Geschlechts erhalten. Diese durch Stabilisierung erhaltenen Heegaard-Zerlegungen sind reduzibel, d. h., es gibt in der Heegaard-Fläche eine geschlossene Kurve, die in beiden Henkelkörpern (aber nicht in der Heegaard-Fläche) eine Kreisscheibe berandet. Eine Heegaard-Zerlegung heißt irreduzibel, wenn es keine solche Kurve gibt. Das Lemma von Haken besagt, dass Heegaard-Zerlegungen einer reduziblen 3-Mannigfaltigkeit immer reduzibel sind.

Eine Heegaard-Zerlegung heißt schwach reduzibel, wenn es in der Heegaard-Fläche zwei disjunkte (nicht null-homotope) geschlossene Kurven gibt, die Kreisscheiben in unterschiedlichen Henkelkörpern der Heegaard-Zerlegung beranden. Andernfalls heißt die Heegaard-Zerlegung stark irreduzibel. Casson und Gordon bewiesen 1987, dass alle irreduziblen Heegaard-Zerlegungen stark irreduzibel sind.

Mannigfaltigkeiten mit Rand

[Bearbeiten | Quelltext bearbeiten]

Für eine 3-Mannigfaltigkeit mit Rand definiert man Heegaard-Zerlegungen analog als Zerlegungen in zwei Kompressionskörper mit .

Eine verallgemeinerte Heegaard-Zerlegung von ist eine Zerlegung in (nicht notwendig zusammenhängende) Kompressionskörper und Flächen mit und . Die Vereinigung der Kompressionskörper muss ganz sein und ihre inneren Kerne sollen disjunkt sein.

  • Saveliev, Nikolai: Lectures on the topology of 3-manifolds. An introduction to the Casson invariant. Second revised edition. de Gruyter Textbook. Walter de Gruyter & Co., Berlin, 2012. ISBN 978-3-11-025035-0

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. P.Heegaard: Forstudier til en topologisk teori for de algebraiske fladers sammenhaeng, Dissertation, Kopenhagen 1898.
{{bottomLinkPreText}} {{bottomLinkText}}
Heegaard-Zerlegung
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?