For faster navigation, this Iframe is preloading the Wikiwand page for Bayesova věta.

Bayesova věta

Ilustrace pomocí dvou spojených třídimenzionálních stromových diagramů Bayesovy věty

Bayesova věta (alternativně Bayesova formule, Bayesův vzorec) je věta teorie pravděpodobnosti, která udává, jak podmíněná pravděpodobnost nějakého jevu souvisí s opačnou podmíněnou pravděpodobností.[1] Poprvé na tuto souvislost upozornil anglický duchovní Thomas Bayes (1702–1761) v posmrtně vydaném článku An Essay towards solving a Problem in the Doctrine of Chances (1763). Roku 1774 větu znovu objevil francouzský matematik a fyzik Pierre-Simon Laplace, nicméně postupně upadla v zapomnění a rozšířila se až v 2. polovině 20. století.[2] Frekvenční interpretace pravděpodobnosti se poté nazývá klasická či Laplaceova, právě podle Pierre-Simona Laplace.

Jedno z mnoha použití Bayesovy věty je v oblasti statistické inference (konkrétně Bayesova inference). Věta taktéž položila základy relativně novému směru statistiky – bayesovské statistiky.[3]

Znění věty

[editovat | editovat zdroj]

Nechť a jsou náhodné jevy a . Potom platí

.

Důkaz věty vychází z definice podmíněné pravděpodobnosti:

, pokud . Symetricky , pokud .

Vyjádřením pravděpodobnosti průniku v obou rovnicích získáváme . Vyjádřením obdržíme Bayesovu formuli:

, pokud .

Alternativní formy Bayesovy věty

[editovat | editovat zdroj]

Pro všechny alternativní formy Bayesovy věty uvažujme nenulovost jmenovatele.

Rozšířené znění

[editovat | editovat zdroj]

Mějme náhodné jevy a , pro . Nechť jsou jevy po dvou disjunktní pro každé a nechť tvoří celý pravděpodobnostní prostor, tedy . Potom platí

.

Využití doplňku

[editovat | editovat zdroj]

Při počítání s Bayesovou formulí je výhodné znát následující úpravu, jelikož nemusíme znát pravděpodobnost náhodných jevů, nýbrž pouze jejich pravděpodobnosti podmíněné.

Tato formule spočívá ve vhodné úpravě jmenovatele, tedy

, kde využíváme vztahu .

Po dosazení do původní věty dostáváme

.[4]

Rodělení doplňku

[editovat | editovat zdroj]

Tato forma Bayesovy věty vychází z předpokladu Bayesovy věty, tedy že platí . Lze ale vyjádřit pravděpodobnost -tého členu . Tedy získáváme upravenou verzi Bayesovy věty využívající doplněk. Pro rozložení podmíněné pravděpodobnosti na pravé straně rovnice lze využít větu o úplné pravděpodobnosti.

Mějme neslučitelné náhodné jevy , kde takové, že pro ně platí . Pak platí

.[5]

Verzi věty lze z konečného počtu náhodných jevů rozšířit i na nekonečně spočetně jevů.

Přidání historie

[editovat | editovat zdroj]

Přidání jednoho prvku

[editovat | editovat zdroj]

Formu, která bere v potaz historii, lze odvodit zavedením substituce a dosazení do znění Bayesovy věty. Získáváme tedy

, z čehož získáváme vzorec
, ze kterého přeznačením (pro konzistenci) získáváme formu Bayesovy věty zobecňující prvek historie v následující podobě:
.

Přidání více prvků

[editovat | editovat zdroj]

Obdobným způsobem lze přidat konečně mnoho prvků historie , respektive i nekonečně spočetně. Můžeme definovat pomocí součtů jako (respektive ).

Tato forma Bayesovy věty může být užitečná, pokud v příkladu testování na drogy budu mít více testovaných lidí, pak obecně označíme výsledek -tého testu, tedy pokud byl první test pozitivní, výsledek do historie zaneseme například jako , pokud by byl negativní, pak bychom položili .

Výsledná forma zobecňující všechny výsledky má podobu

.

Šancová forma Bayesovy věty

[editovat | editovat zdroj]

Z definice šance lze odvodit vzorec poměrů pravděpodobností , který má tvar

, tedy slovně aposteriorní šance hypotézy proti hypotéze je rovna součinu apriorní šance hypotézy proti hypotéze a poměru věrohodností hypotézy proti hypotéze .

Bayesova věta pro spojité náhodné vektory

[editovat | editovat zdroj]

Bayesovu větu lze popsat i pomocí hustoty spojitých náhodných vektorů a . Tedy podmíněná hustota spojitého náhodného vektoru vzhledem k je rovna

Podobu Bayesovy věty pro spojité náhodné vektory lze odvodit dosazením vztahu do vztahu podmíněné hustoty vzhledem k , tedy .[6]

Příklady použití

[editovat | editovat zdroj]

Testování na drogy

[editovat | editovat zdroj]

Nyní si ukažme příklad použití Bayesova pravidla při testování na drogy. Vyjdeme z předpokladů, že test na prokázání drog má senzitivitu 99 % a specificitu 99 %. Test se na první pohled zdá být docela přesný, ale pomocí Bayesovy věty lze ukázat, že netriviální procento testovaných může být nesprávně označeno za uživatele drog. Nechť je v testovaném podniku prevalence 0,5 %, tj. 0,5 % ze zaměstnanců drogy opravdu užívá.

Jaká je pravděpodobnost, že osoba s pozitivním testem drogy opravdu používá?

Označme si uživatele drog jako "A", "N" všechny ostatní. Nechť "+" znamená pozitivní test. Popišme si následující veličiny:

  • pravděpodobnost, že osoba je uživatelem drog (prevalence), tj.
  • pravděpodobnost, že osoba není uživatelem drog; zjistíme pomocí doplňkového jevu, tzn.
  • pravděpodobnost, že test je pozitivní, když je osoba uživatelem drog; jinými slovy sensitivita testu:
  • je pravděpodobnost, že test bude pozitivní, i přesto, že osoba není uživatelem drog; lze interpretovat jako doplněk k specificitě testu:
  • je pravděpodobnost, že test bude pozitivní.

Pravděpodobnost sice zadanou nemáme, ale lze ji vypočítat dle výše zmíněné formule:

Po dosazení dostáváme výsledek 1,49 %:

Díky těmto údajům můžeme vypočítat žádanou pravděpodobnost pomocí Bayesovy věty:

Všimněme si, že i přes vysokou specificitu a senzitivitu je výsledek testu poměrně nepřesný. U zaměstnance podniku s pozitivním testem je jen 33% pravděpodobnost, že je skutečně uživatelem drog.

Specificita a senzitivita

[editovat | editovat zdroj]

Senzitivita testu (také citlivost testu) nám udává úspěšnost, s níž test zachytí přítomnost sledovaného stavu (nemoci) u daného subjektu. V našem příkladu to znamená, že test správně identifikuje skutečné uživatele drog v 99 % případů.

Specificita testu nám vyjadřuje úspěšnost, s níž test určí případy, u nichž zkoumaný stav (nemoc) nenastává. 99% specificita testu znamená, že test s 99% pravděpodobností správně vyloučí osobu, která drogy nepoužívá.

Bayesovská statistika

[editovat | editovat zdroj]

Bayesovská statistika je pokročilejší odvětví statistiky, které místo bodových odhadů parametrů z dat uvažuje nějaké pravděpodobnostní rozdělení nad možnými hodnotami parametru. To může být apriorní (známé již před získáním dat) nebo aposteriorní (apriorní rozdělení upravené informacemi zachycenými v datech). Matematicky se tento přechod od apriorního rozdělení a dat k aposteriornímu rozdělení formuluje pomocí podmíněných pravděpodobností a Bayesova věta tedy v bayesovské statistice přirozeně hraje klíčovou roli.

  1. OBERHELMAN, David D. Stanford Encyclopedia of Philosophy. Reference Reviews. 2001-06-01, roč. 15, čís. 6, s. 9–9. ISSN 0950-4125. DOI 10.1108/rr.2001.15.6.9.311. (anglicky) 
  2. A History of Bayes' Theorem. www.lesswrong.com [online]. lesswrong.com, 2011-08-29 [cit. 2024-02-19]. Dostupné online. (anglicky) 
  3. BERNARDO, José M.; SMITH, Adrian F. M. Bayesian Theory. Hoboken: John Wiley & Sons, Ltd., 2009. ISBN 9780470317716, ISBN 047031771X. (anglicky) 
  4. BAZETT, Trefor. Introduction to Bayes’ Theorem. Cham: Springer International Publishing Dostupné online. ISBN 978-3-030-95792-6. 
  5. HRON, Karel; KUNDEROVÁ, Pavla; VENCÁLEK, Ondřej. Základy počtu pravděpodobnosti a metod matematické statistiky. Redakce Tereza Vintrová. 4., doplněné vyd. Olomouc: Univerzita Palackého v Olomouci, 2021. 346 s. ISBN 978-80-244-5990-5. Kapitola Podmíněná pravděpodobnost, s. 37–38. 
  6. HRON, Karel; KUNDEROVÁ, Pavla; VENCÁLEK, Ondřej. Základy počtu pravděpodobnosti a metod matematické statistiky. Redakce Tereza Vintrová. 4., doplněné vyd. Olomouc: Univerzita Palackého v Olomouci, 2021. 346 s. ISBN 978-80-244-5990-5. Kapitola Podmíněné rozdělení, s. 125. 

Související články

[editovat | editovat zdroj]

Externí odkazy

[editovat | editovat zdroj]
{{bottomLinkPreText}} {{bottomLinkText}}
Bayesova věta
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?