For faster navigation, this Iframe is preloading the Wikiwand page for Aktinij.

Aktinij

Aktinij,  89Ac
Aktinij u periodnom sistemu
Hemijski element, Simbol, Atomski brojAktinij, Ac, 89
SerijaPrelazni metali
Grupa, Perioda, Blok3, 7, d
Izgledsrebrenasti metal
emitira plavičastu svjetlost[1][2]
CAS registarski broj7440-34-8
Zastupljenost6 · 10-18[3] %
Atomske osobine
Atomska masa227,0278 u
Atomski radijus (izračunat)195 (-) pm
Kovalentni radijus215 pm
Van der Waalsov radijus- pm
Elektronska konfiguracija[Rn] 6d17s2
Broj elektrona u energetskom nivou2, 8, 18, 32, 18, 9, 2
1. energija ionizacije499 kJ/mol
2. energija ionizacije1170 kJ/mol
3. energija ionizacije1900 kJ/mol
Fizikalne osobine
Agregatno stanječvrsto
Kristalna strukturakubična plošno centrirana
Gustoća10070 kg/m3
Tačka topljenja1323 K (1050 °C)
Tačka ključanja3500±300[2] K (3200±300 °C)
Molarni volumen22,55 · 10-6 m3/mol
Toplota isparavanja400 kJ/mol
Toplota topljenja14 kJ/mol
Brzina zvukam/s
Specifična toplota27,2 J/(kg · K) kod 293 K
Toplotna provodljivost12 W/(m · K)
Hemijske osobine
Oksidacioni broj3, 2
Elektrodni potencijal-2,13 V (Ac3+ + 3e- → Ac)
Elektronegativnost1,1 (Pauling-skala)
Izotopi
Izo RP t1/2 RA ER (MeV) PR
225Ac

sin

10 d α 5,935 221Fr
226Ac

sin

29,4 h β- 0,640 226Th
ε 1,116 226Ra
α 5,536 222Fr
227Ac

100 %

21,773 god β- 0,045 227Th
α 5,536 223Fr
228Ac

u tragovima

6,15 h β- 2,127 228Th
Sigurnosno obavještenje
Oznake upozorenja
Oznaka upozorenja nepoznata[4]
Obavještenja o riziku i sigurnostiR: /
S: /
Ostala upozorenja
Radioaktivnost
Radioaktivni element
Radioaktivni element

Radioaktivni element
Ako je moguće i u upotrebi, koriste se osnovne SI jedinice.
Ako nije drugačije označeno, svi podaci dobijeni su mjerenjima u normalnim uvjetima.

Aktinij je hemijski element sa simbolom Ac i atomskim brojem 89. Po njemu je serija hemijskih elemenata dobila ime aktinoidi, gdje spada grupa od petnaest vrlo sličnih elemenata u periodnom sistemu, počev od njega do lorensija. Aktinij se također ponekad smatra i prvim prelaznim metalom 7. periode, mada se mnogo rjeđe lorensiju dodjeljuje ta pozicija. Aktinij je otkriven 1899. godine, a bio je prvi neprimordijalni radioaktivni element koji je izdvojen. Iako su polonij, radij i radon otkriveni prije aktinija, oni nisu bili dobijeni u čistom obliku sve do 1902. godine.

Aktinij je vrlo mehak, srebrenasto-svijetli radioaktivni metal koji vrlo burno reagira sa kisikom i vlagom iz zraka, gradeći bijeli pokrivni aktinij-oksid koji sprječava daljnju oksidaciju. Kao i većina lantanoida i mnogih aktinoida, on zadržava oksidacijsko stanje +3 u gotovo svim svojim spojevima. Ovaj metal se nalazi samo u tragovima unutar ruda uranija i torija u vidu izotopa 227Ac, a koji se raspada tokom vremena poluraspada od 21,772 godine, pretežno emitirajući beta- a rjeđe i alfa-čestice. Također, postoji i izotop 228Ac, koji je beta aktivan, ali mu je vrijeme poluraspada samo 6,15 sati. U jednoj toni prirodnog uranija u rudama sadržano je oko 0,2 miligrama aktinija-227, dok jedna tona prirodnog torija sadrži približno 5 nanograma aktinija-228. Zbog velike sličnosti u fizičkim i hemijskim osobinama aktinija i lantana, odvajanje aktinija iz njegovih ruda nije praktično. Umjesto toga, ovaj element se u miligramskim količinama dobija zračenjem neutronima izotopa radija-226 u nuklearnim reaktorima. Zbog rijetkosti, visoke cijene dobijanja i radioaktivnosti, aktinij nema značajnijih primjena u industriji. Njegova upotreba svodi se na izvor neutrona te kao sredstvo u radioterapiji, kojim se zrače određene ćelije tumora u tijelu.

Historija

[uredi | uredi izvor]

Francuski hemičar André-Louis Debierne objavio je 1899. otkriće novog elementa. Izdvojio ga je iz ostataka rude uraninita, iz koje su Marie i Pierre Curie prethodno izdvojili radij. Iste godine, Debierne je opisao novu tvar da je slična titaniju[5] a u studiji iz 1900. naveo je da je element sličan toriju.[6] Aktinij je, neznajući za Debierneovo otkriće, također otkrio i Friedrich Oskar Giesel 1902. godine[7] kada je novu supstancu opisao da je slična lantanu, te ga je 1904. godine nazvao emanium.[8] Nakon što su Harriet Brooks 1904. te Otto Hahn i Otto Sackur 1905. godine uporedili vremena poluraspada supstanci koje su otkrili Debierne i Giesel,[9] odabrali su da zadrže ime elementa koje je predložio Debierne jer je bio prvi koji ga je otkrio, iako je postojala nepodudarnost u hemijskim osobinama koje je on različito navodio u različitim radovima i periodima.[8][10]

Članci objavljeni tokom 1970tih[11] i kasnije[12] navode da Debierneovi rezultati objavljeni 1904. nisu saglasni sa onim objavljenim 1899. i 1900. godine. Osim toga, prema današnjem znanju iz oblasti hemije aktinija izvodi se zaključak da je ovaj element nije mogao biti ništa drugo osim vrlo mali sastojak u Debierneovim rezultatima iz 1899. i 1900. Zapravo, hemijske osobine tvari o kojoj je on pisao navode na pomisao da se u tom slučaju radilo o protaktiniju, elementu koji nije otkriven još narednih četrnaest godina, samo zbog toga što je "nestao" zbog svoje hidrolize i adsorpcije na Debierneovom laboratorijskom posuđu. To otkriće je navelo neke autore da Giesela "proglase" osobom koja je otkrila aktinij.[2] Nešto umjereniju viziju naučnog otkrića predložio je Adloff.[12] On je naveo bi se retrospektivne kritike ranih radova trebale ublažiti zbog tadašnjeg nivoa znanja iz radiohemije: naglašavajući opreznost Debierneovih tvrdnjih u prvobitnim radovima, on zapaža da niko ne može sa sigurnošću tvrditi da Debierneova supstanca nije sadržavala aktinij.[12] Debierne, koji prema mišljenjima većine historičara važi za pronalazača aktinija, izgubio je kasnije zanimanje za ovaj element i napustio istraživanje. S druge strane, Gieselu se s punim pravom može dati čast za prvo dobijanje radiohemijski čistog uzorka aktinija kao i za određivanje njegovog atomskog broja 89.[11] Ime aktinij potječe od starogrčkih riječi aktis, aktinos (starogrčki: ακτίς, ακτίνος) što znači zraka.[13] Njegov simbol Ac također se koristi i kao skraćenica za druge supstance ili organske spojeve koji nemaju nikakve veze sa aktinijem, poput acetila, acetata[14] i ponekad acetaldehida.[15]

Osobine

[uredi | uredi izvor]

Aktinij je mehki, srebreno-sjajni,[16][17] radioaktivni metalni element. Njegov modul smicanja (Coulombov modul) vrlo je blizak onom kod olova.[18] Zbog vrlo snažne radioaktivnosti aktinija, on u mraku sjaji svijetloplavom svjetlošću, koja potječe jer se okolni zrak ionizira zbog emisije energetskih čestica.[19] Hemijske osobine su slične osobinama lantana i drugih lantanoida, pa je sve te elemente vrlo teško razdvojiti iz ruda uranija. Ekstrakcija otapalima i ionoizmjenjivačka hromatografija su najčešće metode korištene u izdvajanju aktinija.[20] Kao prvi element među aktinoidi, a po njemu je ova grupa i dobila ime, na isti način kao što je lantan za lantanoide. Međutim, aktinoidi su u mnogo većoj mjeri različiti između sebe u odnosu na lantanoide, tako da sve do 1928. i prijedloga Charlesa Janeta o najznačajnijoj izmjeni Mendeljejevog periodnog sistema još od formiranja grupe lantanoida, tako što je uveo aktinoide, a isti prijedlog imao je i Glenn T. Seaborg 1945. godine.[21]

Aktinij vrlo burno reagira sa kisikom i vlagom iz zraka gradeći bijeli pokrovni sloj aktinij-oksida koji onemogućava daljnju oksidaciju.[16] Kao i kod većine lantanoida i aktinoida, aktinij postoji u oksidacijskom stanju +3, a ioni Ac3+ su bezbojni u rastvorima.[22] Oksidacijsko stanje +3 se javlja zbog elektronske konfiguracije aktinija [Rn]6d17s2, sa tri valentna elektrona koji se vrlo lahko otpuštaju dajući stabilnu strukturu zatvorenih elektronskih ljusci plemenitog plina radona.[17] Rijetko oksidacijsko stanje +2 jedino je poznato kod aktinij-dihidrida (AcH2); mada se i tu možda radi o elektridnom spoju kao i kod njegovog lakšeg kongenera lantana u spoju LaH2.[23]

Izotopi

[uredi | uredi izvor]

Aktinij koji se javlja u prirodi sastoji se iz dva radioaktivna izotopa: 227Ac (koji se nalazi u radioaktivnom nizu raspadanja izotopa 235U) i 228Ac, koji je treći po redu "kćerka" izotop od 232Th. 227Ac se pretežno raspada kao beta emiter s vrlo malom energijom, ali se pri 1,38% raspada emitira alfa čestica, pa se stoga vrlo lahko može identificirati pomoću alfa spektrometrije.[2] Ukupno je do danas poznato 36 radioizotopa ovog elementa, a među njima je najstabilniji 227Ac čije vrijeme poluraspada iznosi 21,772 godina. Nakon njega slijede 225Ac sa vremenom poluraspada od 10 dana i 226Ac sa vremenom poluraspada od 29,37 sati. Svi ostali poznati radioaktivni izotopi imaju vremena poluraspada kraća od 10 sati, a većina od njih vremena kraća od jedne minute. Najkraće vrijeme poluraspada ima izotop aktinija 217Ac sa 69 nanosekundi, a koji se raspada alfa raspadom i elektronskim zahvatom. Aktinij ima i dva poznata metastabilna izotopa.[24] U hemiji su najznačajniji izotopi 225Ac, 227Ac i 228Ac.[2]

Obogaćeni 227Ac se nalazi u ravnoteži sa svojim proizvodima raspada nakon otprilike pola godine. On se raspada tokom svog vremena poluraspada od 21,772 godine emitirajući uglavnom beta (98,62%) i neznatno alfa čestice (1,38%),[24] a "kćerke" izotopi su dio lanca raspada poznatog kao aktinijev niz. Iz razloga svoje rijetkosti i slabe rasprostranjenosti, niske energije beta čestica koje emitira (najviše 44,8 keV) i niskog intenziteta alfa zračenja, 227Ac je vrlo teško direktno detektirati putem njegove emisije pa se stoga prati samo preko proizvoda raspada.[22] Izotopi aktinija po atomskoj težini imaju raspon od 206 u (206Ac) do 236 u (236Ac).[24]

Izotop Proizvodnja Raspad Vrijeme
poluraspada
221Ac 232Th(d,9n)→225Pa(α)→221Ac α 52 ms
222Ac 232Th(d,8n)→226Pa(α)→222Ac α 5,0 s
223Ac 232Th(d,7n)→227Pa(α)→223Ac α 2,1 min
224Ac 232Th(d,6n)→228Pa(α)→224Ac α 2,78 h
225Ac 232Th(n,γ)→233Th(β)→233Pa(β)→233U(α)→229Th(α)→225Ra(β)→225Ac α 10 dana
226Ac 226Ra(d,2n)→226Ac α, β
elektronski
zahvat
29,37 h
227Ac 235U(α)→231Th(β)→231Pa(α)→227Ac α, β 21,77 god.
228Ac 232Th(α)→228Ra(β)→228Ac β 6,15 h
229Ac 228Ra(n,γ)→229Ra(β)→229Ac β 62,7 min
230Ac 232Th(d,α)→230Ac β 122 s
231Ac 232Th(γ,p)→231Ac β 7,5 min
232Ac 232Th(n,p)→232Ac β 119 s

Rasprostrenjenost

[uredi | uredi izvor]

Može se naći samo u tragovima u rudama uranija. Jedna tona rude uranija sadrži oko 0,2 miligrama izotopa 227Ac[25][26] dok jedna tona rude torija sadrži oko 5 nanograma izotopa 228Ac. Izotop 227Ac je prelazni član raspadnog lanca uranij-aktinijevog niza koji počinje sa "roditeljskim" izotopom uranija-235 (ili plutonija 239Pu) a završava sa stabilnim izotopom olova 207Pb. Izotop 228Ac je prelazni član torijevog niza raspada, koji započinje "roditeljskim" izotopom 232Th a završava stabilnim izotopom olova 208Pb. Još jedan izotop aktinija (225Ac) je prelazni član u neptunijevom nizu raspada, a koji počinje sa 237Np (ili 233U) a završava sa talijem (205Tl) i (gotovo) stabilnim bizmutom (209Bi), mada je ovaj lanac raspada postojao samo u ranoj fazi nastanka Sunčevog sistema zbog vrlo kratkog vremena poluraspada izotopa neptunija-237.

Dobijanje

[uredi | uredi izvor]
Ruda uraninita ima povišenu koncentraciju aktinija.

Mala prirodna koncentracija i fizičke i hemijske osobine koje su vrlo bliske onima kod lantana i drugih lantanoida, a koje su vrlo bogate u rudama koje u svom sastavu imaju tragove aktinija, čine izdvajanje ovog elementa iz ruda vrlo nepraktičnim, a povrh toga potpuno izdvajanje nikad nije postignuto.[27] Iz tih razloga, aktinij u miligramskim količinama dobija se zračenjem neutronima izotopa radija 226Ra u nuklearnom reaktoru.[26][28]

Ova reakcija ima prinos od oko 2% od težine upotrebljenog radija. 227Ac može kasnije i dalje "hvatati" neutrone što rezultira nastankom malih količina 228Ac. Nakon sinteze, aktinij se odvaja od radija kao i od proizvoda raspada i nuklearne fuzije, poput torija, polonija, olova i bizmuta. Ekstrakcija se vrši pomoću vodenog rastvora tenoiltrifluoroaceton-benzena iz rastvora proizvoda zračenja, a selektivnost prema određenom elementu postiže se podešavanjem pH vrijednosti rastvora (oko 6,0 za aktinij).[25] Alternativni način jeste izmjena aniona sa odgovarajućom smolom u dušičnoj kiselini, čime se može postići faktor razdvajanja od 1.000.000 za radij i aktinij u odnosu na torij u dvostepenom procesu. Nakon toga aktinij se razdvaja od radija odnosom od približno 100, koristeći smolu sa slabom kationskom izmjenom niskog poprečnog vezivanja te dušičnu kiselinu kao eluant.[29]

Spojevi

[uredi | uredi izvor]

Poznat je vrlo ograničen broj spojeva aktinija uključujući AcF3, AcCl3, AcBr3, AcOF, AcOCl, AcOBr, Ac2S3, Ac2O3 i AcPO4. Osim spoja AcPO4, svi drugi spojevi vrlo su slični odgovarajućim spojevima lantana. U svim navedenim spojevima, aktinij se nalazi u oksidacijskom stanju +3.[22][27] Tačnije, konstante rešetke analognih spojeva aktinija i lantana razlikuju se za samo nekoliko postotaka.[27]

Formula Boja Simetrija Prostorna
grupa
Br Pearson a (pm) b (pm) c (pm) Z Gustoća,
g/cm3
Ac srebrenast fcc[23] Fm3m 225 cF4 531,1 531,1 531,1 4 10,07
AcH2 nepoznato kubična[23] Fm3m 225 cF12 567 567 567 4 8,35
Ac2O3 bijel[16] trigonalna[30] P3m1 164 hP5 408 408 630 1 9,18
Ac2S3 crn kubična[31] I43d 220 cI28 778,56 778,56 778,56 4 6,71
AcF3 bijel[32] heksagonalna[27] P3c1 165 hP24 741 741 755 6 7,88
AcCl3 bijel heksagonalna[33] P63/m 165 hP8 764 764 456 2 4,8
AcBr3 bijel[27] heksagonalna[33] P63/m 165 hP8 764 764 456 2 5,85
AcOF bijel[34] kubična[27] Fm3m 593,1 8,28
AcOCl bijel tetragonalna[27] 424 424 707 7.23
AcOBr bijel tetragonalna[27] 427 427 740 7,89
AcPO4·0.5H2O nepoznato heksagonalna[27] 721 721 664 5,48

Ovdje su a, b i c konstante rešetke, br. je broj prostorne grupe a Z je član formulske jedinice po ćelijskoj jedinici. Gustoća spojeva nije mjerena direktnim putem već izračunata preko parametara rešetke.

Oksidi

[uredi | uredi izvor]

Aktinij-oksid (Ac2O3) može se dobiti zagrijavanjem hidroksida na 500 °C ili zagrijavanjem oksalata pri 1100 °C u vakuumu. Njegova kristalna rešetka je izotipska sa oksidima većine trovalentnih rijetkih zemnih metala.[27]

Halidi

[uredi | uredi izvor]

Aktinij-trifluorid se može dobiti bilo u rastvoru ili putem reakcije čvrstih tvari. Prva reakcija u rastvoru može se odvijati pri sobnoj temperaturi tako što se dodaje fluoridna kiselina u rastvor u kojem se nalaze ioni aktinija. Drugi metod pri čemu se metalni aktinij tretira fluorovodikom pri 700 °C sa platinom kao katalizatorom. Djelovanjem amonij-hidroksida na aktinij-trifluorid pri 900–1000 °C dobija se oksifluorid AcOF. Dok lantan-oksifluorid se vrlo lahko može dobiti sagorijevanjem lantan-trifluorida u prisustvu zraka pri 800 °C tokom jednog sata, slična procedura aktinij-trifluorida ne daje AcOF te se samo dobijaju istopljeni reaktanti.[27][35]

AcF3 + 2 NH3 + H2O → AcOF + 2 NH4F

Aktinij-trihlorid se dobija reakcijom aktinij-hidroksida ili oksalata sa parama ugljik-tetrahlorida pri temperaturama iznad 960 °C. Slično kao i kod oksifluorida, aktinij-oksihlorid se može dobiti hidroliziranjem aktinij-trihlorida sa amonij-hidroksidom pri 1000 °C. Međutim, za razliku od oksifluorida, oksihlorid se mnogo lakše može sintetizirati ako se u rastvor aktinij-trihlorida u hlorovodičnoj kiselini doda amonijak.[27]

Reakcija aluminij-bromida i aktinij-oksida daje aktinij-tribromid:

Ac2O3 + 2 AlBr3 → 2 AcBr3 + Al2O3

a zatim se dodavanjem amonij-hidroksida pri 500 °C dobija oksibromid AcOBr.[27]

Aktinij-hidrid se može dobiti redukcijom aktinij-trihlorida sa kalijem pri 300 °C, a njegova struktura se proučava putem analogije sa odgovarajućim LaH2 hidridom. Izvor vodika u ovoj reakciji nije sasvim poznat.[36]

Miješajući mononatrij-fosfat (NaH2PO4) sa rastvorom aktinija u hlorovodičnoj kiselini dobija se bijeli spoj aktinij-fosfat poluhidrat (AcPO4·0.5H2O), dok se zagrijavanjem aktinij-oksalata sa parama vodik-sulfida pri 1400 °C tokom nekoliko minuta dobija crni aktinij-sulfid Ac2S3. Moguće je da se on također može dobiti djelovanjem mješavine vodik-sulfida i ugljik-disulfida na aktinij-oksid pri temperaturi od 1000 °C.[27]

Reference

[uredi | uredi izvor]
  1. ^ Wall, Greg (8. 9. 2003). "C&EN: It's Elemental: The Periodic Table - Actinium". C&EN: It's Elemental: The Periodic Table. Chemical and Engineering News. Pristupljeno 2. 6. 2011.
  2. ^ a b c d e Kirby Harold W.; Morss Lester R. (2006). "Actinium". The Chemistry of the Actinide and Transactinide Elements. str. 18. doi:10.1007/1-4020-3598-5_2. ISBN 978-1-4020-3555-5.CS1 održavanje: više imena: authors list (link)
  3. ^ Harry H. Binder (1999). Lexikon der chemischen Elemente. Stuttgart: S. Hirzel Verlag. ISBN 3-7776-0736-3.
  4. ^ EU ovaj element još uvijek nije stavila na spisak opasnih elemenata, međutim trenutno nije moguće pronaći pouzdani izvor ili literaturu o opasnim svojstvima ove supstance. Radioaktivnost ne spada u opasna svojstva koja se ovdje navode.
  5. ^ André-Louis Debierne (1899). "Sur un nouvelle matière radio-active". Comptes rendus (jezik: francuski). 129: 593–595. Pristupljeno 26. 9. 2017.
  6. ^ André-Louis Debierne (1900). "Sur un nouvelle matière radio-actif – l'actinium". Comptes rendus (jezik: francuski). 130: 906–908.
  7. ^ Friedrich Oskar Giesel (1902). "Ueber Radium und radioactive Stoffe". Berichte der Deutschen Chemische Geselschaft (jezik: njemački). 35 (3): 3608–3611. doi:10.1002/cber.190203503187.
  8. ^ a b Friedrich Oskar Giesel (1904). "Ueber den Emanationskörper (Emanium)". Berichte der Deutschen Chemische Geselschaft (jezik: njemački). 37 (2): 1696–1699. doi:10.1002/cber.19040370280.
  9. ^ André-Louis Debierne (1904). "Sur l'actinium". Comptes rendus (jezik: francuski). 139: 538–540.
  10. ^ Friedrich Oskar Giesel (1905). "Ueber Emanium". Berichte der Deutschen Chemische Geselschaft (jezik: njemački). 38 (1): 775–778. doi:10.1002/cber.190503801130.
  11. ^ a b Harold W. Kirby (1971). "The Discovery of Actinium". Isis. 62 (3): 290–308. doi:10.1086/350760. JSTOR 229943.
  12. ^ a b c J. P. Adloff (2000). "The centenary of a controversial discovery: actinium". Radiochim. Acta. 88 (3–4_2000): 123–128. doi:10.1524/ract.2000.88.3-4.123.
  13. ^ Hammond, C. R. The Elements u: Lide, D. R. (2005). CRC Handbook of Chemistry and Physics (86 izd.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  14. ^ Gilley, Cynthia Brooke; Univerzitet Kalifornije, San Diego (2008). New convertible isocyanides for the Ugi reaction; application to the stereoselective synthesis of omuralide. ProQuest. str. 11. ISBN 978-0-549-79554-4.CS1 održavanje: više imena: authors list (link)
  15. ^ Reimers, Jeffrey R. (2011). Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology. John Wiley and Sons. str. 575. ISBN 978-0-470-48788-4.
  16. ^ a b c Joseph G. Stites; Salutsky Murrell L.; Stone Bob D. (1955). "Preparation of Actinium Metal". J. Am. Chem. Soc. 77 (1): 237–240. doi:10.1021/ja01606a085.CS1 održavanje: više imena: authors list (link)
  17. ^ a b "Actinium". Encyclopædia Britannica (15 izd.). 1995. str. 70.
  18. ^ Seitz, Frederick; Turnbull, David (1964). Solid state physics: advances in research and applications. Academic Press. str. 289–291. ISBN 0-12-607716-9.CS1 održavanje: više imena: authors list (link)
  19. ^ Richard A. Muller (2010). Physics and Technology for Future Presidents: An Introduction to the Essential Physics Every World Leader Needs to Know. Princeton University Press. str. 136–. ISBN 978-0-691-13504-5.
  20. ^ J. J. Katz; Manning W. M. (1952). "Chemistry of the Actinide Elements Annual Review of Nuclear Science". Annual Review of Nuclear Science. 1: 245–262. Bibcode:1952ARNPS...1..245K. doi:10.1146/annurev.ns.01.120152.001333.CS1 održavanje: više imena: authors list (link)
  21. ^ Glenn T. Seaborg (1946). "The Transuranium Elements". Science. 104 (2704): 379–386. Bibcode:1946Sci...104..379S. doi:10.1126/science.104.2704.379. JSTOR 1675046. PMID 17842184.
  22. ^ a b c Actinium, Большой Советской Энциклопедии; pristupljeno 28. septembra 2017. (ru)
  23. ^ a b c Farr J.; Giorgi A. L.; Bowman M. G.; Money R. K. (1961). "The crystal structure of actinium metal and actinium hydride". Journal of Inorganic and Nuclear Chemistry. 18: 42–47. doi:10.1016/0022-1902(61)80369-2.CS1 održavanje: više imena: authors list (link)
  24. ^ a b c Audi Georges; Bersillon O.; Blachot J.; Wapstra A. H. (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A. Atomic Mass Data Center. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.CS1 održavanje: više imena: authors list (link)
  25. ^ a b Hagemann French (1950). "The Isolation of Actinium". Journal of the American Chemical Society. 72 (2): 768–771. doi:10.1021/ja01158a033.
  26. ^ a b Greenwood Norman N.; Earnshaw Alan (1997). Chemistry of the Elements (2 izd.). Butterworth-Heinemann. str. 946. ISBN 0-08-037941-9.CS1 održavanje: više imena: authors list (link)
  27. ^ a b c d e f g h i j k l m n Fried Sherman; Hagemann French; Zachariasen W. H. (1950). "The Preparation and Identification of Some Pure Actinium Compounds". Journal of the American Chemical Society. 72 (2): 771–775. doi:10.1021/ja01158a034.CS1 održavanje: više imena: authors list (link)
  28. ^ Emeleus, H. J. (1987). Advances in inorganic chemistry and radiochemistry. Academic Press. str. 16–. ISBN 978-0-12-023631-2.
  29. ^ Bolla Rose A.; Malkemus D.; Mirzadeh S. (2005). "Production of actinium-225 for alpha particle mediated radioimmunotherapy". Applied Radiation and Isotopes. 62 (5): 667–679. doi:10.1016/j.apradiso.2004.12.003. PMID 15763472.CS1 održavanje: više imena: authors list (link)
  30. ^ Zachariasen W. H. (1949). "Crystal chemical studies of the 5f-series of elements. XII. New compounds representing known structure types". Acta Crystallographica. 2 (6): 388–390. doi:10.1107/S0365110X49001016.
  31. ^ Zachariasen W. H. (1949). "Crystal chemical studies of the 5f-series of elements. VI. The Ce2S3-Ce3S4 type of structure". Acta Crystallographica. 2: 57–60. doi:10.1107/S0365110X49000126.
  32. ^ Meyer 1991, str. 71.
  33. ^ a b Zachariasen W. H. (1948). "Crystal chemical studies of the 5f-series of elements. I. New structure types". Acta Crystallographica. 1 (5): 265–268. doi:10.1107/S0365110X48000703.
  34. ^ Meyer 1991, str. 87.
  35. ^ Meyer 1991, str. 87-88.
  36. ^ Meyer 1991, str. 43.

Literatura

[uredi | uredi izvor]
{{bottomLinkPreText}} {{bottomLinkText}}
Aktinij
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?