For faster navigation, this Iframe is preloading the Wikiwand page for مبرهنة ستوكس.

مبرهنة ستوكس

مبرهنة ستوكس
معلومات عامة
سُمِّي باسم
اشتق من
يدرسه
تعريف الصيغة
عدل القيمة على Wikidata
تعميم لـ

في حساب المتجهات وعلم الهندسة التفاضلية، تعرف مبرهنة ستوكس أو مبرهنة ستوكس المعممة (بالإنجليزية: Stokes' theorem أو Generalized Stokes theorem)‏ بأنها [1] هي بيان حول تكامل الصور التفاضلية على المشعبات، والذي يبسط ويعمم العديد من المبرهنات من حساب المتجهات. تقول مبرهنة ستوكس أن تكامل الصورة التفاضلية ω على حدود بعض المشعب الموجه يساوي تكامل مشتقها الخارجي dω على كامل i، أي

تمت صياغة مبرهنة ستوكس في شكلها الحديث من قبل إيلي كارتن في عام 1945، بعد العمل السابق على تعميم مبرهنات حساب المتجهات من قبل فيتو فولتيرا، وإدوارد غورسا، وهنري بوانكاريه.

هذا الشكل الحديث لمبرهنة ستوكس هو تعميم واسع للنتيجة الكلاسيكية التي أبلغها لورد كلفن إلى جورج ستوكس في رسالة بتاريخ 2 يوليو 2 يوليو 1850.[2][3][4] وضع ستوكس المبرهنة كسؤال في امتحان جائزة سميث [الإنجليزية] 1854، مما أدى إلى النتيجة التي تحمل اسمه. تم نشره لأول مرة من قبل هيرمان هانكل في 1861.[4][5] ترتبط مبرهنة كلفن-ستوكس الكلاسيكية هذه بالتكامل السطحي لدوران حقل متجهي F على سطح (أي، تدفق دوران F) في فضاء إقليدي ثلاثي الأبعاد إلى تكامل خطي للحقل المتجهي على حدوده (المعروف أيضًا باسم «التكامل العروي»)

التفسير الرياضياتي:

ليكن γ: [a, b] → R2 منحنى مستوي جورداني ناعم متعدد التعريف. تستلزم مبرهنة منحنى جوردان بأن γ يقسم R2 إلى مركبتين، أحدهما متراص والآخر غير متراص. ليكن يشير إلى الجزء المتراص المحدود من قبل γ ونفترض أن ψ: DR3 ناعم، مع S := ψ(D). إذا كانت Γ المنحنى الفضائي المعرف بـ Γ(t) = ψ(γ(t))[ملاحظة 1] و F حقل متجهي ناعم على R3، إذن:[6][7][8]

حيث يشير إلى المؤثر التفاضلي «دوران».

هذا البيان الكلاسيكي، إلى جانب مبرهنة التباعد الكلاسيكية، والمبرهنة الأساسية للتفاضل والتكامل، ومبرهنة غرين هي ببساطة حالات خاصة من الصيغة العامة المذكورة أعلاه.

هوامش

[عدل]
  1. ^ γ و Γ كلاهما عُرْوات (loops)، ومع ذلك، Γ ليس بالضرورة منحنى جوردان


المصادر

[عدل]
  1. ^ Physics of Collisional Plasmas – Introduction to | Michel Moisan | Springer (بالإنجليزية). Archived from the original on 2019-04-03.
  2. ^ See:
  3. ^ Darrigol, Olivier (2000). Electrodynamics from Ampère to Einstein (بالإنجليزية). Oxford, England. p. 146. ISBN:0198505930.((استشهاد بكتاب)): صيانة الاستشهاد: مكان بدون ناشر (link)
  4. ^ ا ب Spivak (1965), p. vii, Preface.
  5. ^ See:
  6. ^ Stewart، James (2010). Essential Calculus: Early Transcendentals. Cole.
  7. ^ This proof is based on the Lecture Notes given by Prof. Robert Scheichl (جامعة باث, U.K) [1], please refer the [2] نسخة محفوظة 3 أغسطس 2019 على موقع واي باك مشين.
  8. ^ This proof is also same to the proof shown in
{{bottomLinkPreText}} {{bottomLinkText}}
مبرهنة ستوكس
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?