For faster navigation, this Iframe is preloading the Wikiwand page for Portail:Probabilités et statistiques.

Portail:Probabilités et statistiques

Portail des probabilités et statistiques

Il y a actuellement 1 954 articles liés au portail.

« La statistique est la première des sciences inexactes. »
Présentation
Ce portail est une section du portail Mathématiques, consacrée à la théorie des probabilités et à la statistique.

La théorie des probabilités est l'étude mathématique des phénomènes caractérisés par le hasard et l'incertitude ; la statistique est l'activité qui consiste à recueillir, traiter et interpréter un ensemble de données. Il existe des interconnexions entre ces deux domaines des sciences de l'aléatoire.

Ces domaines mathématiques sont en relation avec les autres domaines mathématiques comme l'algorithmique, l'analyse, l'informatique théorique ou la logique. Les probabilités se retrouvent dans la théorie des jeux, la biologie, l'économie ou la physique, entre autres. On retrouve la statistique dans des domaines comme l'économie, la physique, la sociologie,...

Vous êtes cordialement invités à participer au projet. Pour toutes questions ou remarques vous pouvez consulter notre page de discussion.

Lumière sur...
Problème de Monty Hall
Le problème de Monty Hall est un casse-tête probabiliste librement inspiré du jeu télévisé américain Let's Make a Deal. Il est simple dans son énoncé mais non intuitif dans sa résolution et c'est pourquoi on parle parfois à son sujet de paradoxe de Monty Hall. Le nom de ce problème mathématique vient du nom de celui qui a présenté ce jeu aux États-Unis pendant treize ans, l'animateur d'origine canadienne Monty Hall.

L'énoncé célèbre du problème fut publié dans Parade Magazine en septembre 1990 : « Supposez que vous êtes sur le plateau d'un jeu télévisé, face à trois portes et que vous devez choisir d'en ouvrir une seule, en sachant que derrière l'une d'elles se trouve une voiture et derrière les deux autres des chèvres. Vous choisissez une porte, disons la numéro 1, et le présentateur, qui lui sait ce qu'il y a derrière chaque porte, ouvre une autre porte, disons la numéro 3, porte qui une fois ouverte découvre une chèvre. Il vous demande alors : « désirez-vous ouvrir la porte numéro 2 ? ». À votre avis, est-ce à votre avantage de changer de choix et d'ouvrir la porte 2 plutôt que la porte 1 initialement choisie ? »

Puisqu'il n'y a aucun moyen de savoir laquelle des deux portes restantes cache la voiture, nous pourrions supposer que conserver le choix initial ou changer notre choix n'a pas d'importance. En réalité, nous devrions changer notre choix, ainsi nous aurions deux fois plus de chance d'ouvrir la bonne porte, passant ainsi d'une probabilité de gagner de 1/3 à celle de 2/3.

Lorsque le problème et sa solution furent publiés, quelque 10 000 lecteurs ont écrit au magazine pour affirmer que le raisonnement était faux.

Le saviez-vous ?
  • Le premier usage du mot « probabilité » apparait en 1370 avec la traduction de l'éthique à Nicomaque d'Aristote par Oresme et désigne alors « le caractère de ce qui est probable ».
  • La théorie de la probabilité classique ne prend réellement son essor qu'avec les notions de mesure et d'ensembles mesurables qu'Émile Borel introduit en 1897.
  • La première application industrielle des statistiques eut lieu lors du recensement américain de 1890, qui mit en œuvre la carte perforée inventée par le statisticien Herman Hollerith.
  • Parmi les domaines étudiés par le très influent groupe mathématique Bourbaki, la théorie des probabilités a été délaissée, voire rejetée.
  • En 1993, Robert Faid reçut le prix Ig Nobel pour avoir calculé les chances exactes (710 609 175 188 282 000 contre 1) que Mikhaïl Gorbatchev soit l'Antéchrist.
  • Le mardi , la médaille Fields a été attribuée à quatre mathématiciens, dont le français Wendelin Werner, qui est spécialisé en probabilités. C'est la première médaille Fields attribuée à un probabiliste.
Une image au hasard
Il manque des noms de fichiers image ou des légendes (éventuellement vides) par rapport au nombre indiqué (30).
Exemple d'iconographie des corrélations : ici une représentation des liens entre différentes variables (en rouge, vert et noir) liées aux planètes (en bleu).

Une personnalité au hasard
Index thématique

Applications

Voir aussi
Lien vers Wikimedia Commons

Wikimedia Commons
(Ressources multimédia)
Les images


Lien vers Wiktionnaire

Wiktionnaire
(Dictionnaire universel)
Probabilité
Statistique

Lien vers Wikiversité

Wikiversité
(Ressources pédagogiques)
Probabilités et Statistique

Lien vers Wikilivres

Wikilivres
(Textes et manuels)
Statistique

Lien vers Wikiquote

Wikiquote
(Recueil de citations)
Hasard

{{bottomLinkPreText}} {{bottomLinkText}}
Portail:Probabilités et statistiques
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?