For faster navigation, this Iframe is preloading the Wikiwand page for Plan complexe.

Plan complexe

En mathématiques, le plan complexe (aussi appelé plan d'Argand, plan d'Argand-Cauchy ou plan d'Argand-Gauss[1]) désigne un plan, muni d'un repère orthonormé, dont chaque point est la représentation graphique d'un nombre complexe unique. Le nombre complexe associé à un point est appelé l'affixe de ce point. Une affixe est constituée d'une partie réelle et d'une partie imaginaire correspondant respectivement à l'abscisse et l'ordonnée du point.

Définition

[modifier | modifier le code]
Représentation graphique de z dans le plan complexe, coordonnées cartésiennes et polaire.

On associe en général le plan complexe à un repère orthonormé direct. Dans un tel repère, tout point M est l'image d'un unique nombre complexe z qui est appelé affixe de cet unique point (le genre du nom affixe est discuté : le dictionnaire de l'Académie française le renseigne comme masculin[2], les dictionnaires commerciaux l'annoncent comme féminin[3]) : on note M(z).

Pour tout nombre complexe z tel que z=a+ iba et b sont des réels, on a la relation . On peut ainsi dire que la partie réelle de z est l'abscisse de M et que la partie imaginaire de z en est son ordonnée.

D'après cette égalité, tous les points de l'axe sont tels que la partie imaginaire de leur affixe est nulle : leur affixe est donc un nombre réel. En conséquence, on appelle l'axe axe des réels.

De la même façon, tous les points de l'axe sont tels que la partie réelle de leur affixe est nulle : leur affixe est donc un nombre imaginaire pur. En conséquence, on appelle l'axe axe des imaginaires purs.

(a ; b) sont les coordonnées cartésiennes du point M, unique représentant du nombre z=a+ ib dans le plan complexe. On peut aussi écrire z avec les coordonnées polaires (r ; θ) du point M, ce qui correspond à l'écriture exponentielle z=r ei θ. Dans ce cas, r est le module du nombre z et θ est un de ses arguments (modulo ).

Transformations du plan

[modifier | modifier le code]

La somme de deux vecteurs correspond à la somme de leurs affixes. Ainsi, la translation d'un vecteur donné correspond à l'addition de son affixe.

Une rotation d'un angle θ autour de l'origine correspond à la multiplication de l'affixe par le nombre e, qui est un nombre complexe de module 1.

Une homothétie de rapport k (réel) et de centre l'origine du plan correspond à la multiplication de l'affixe par k.

Article annexe

[modifier | modifier le code]

Notes et références

[modifier | modifier le code]
  1. « Argand Jean Robert », sur ChronoMath.
  2. Académie Française, « Dictionnaire de l'Académie Française », sur dictionnaire-academie.fr.
  3. dictionnaire Larousse, « article affixe », sur larousse.fr.

Lien externe

[modifier | modifier le code]
  • Jean-Robert Argand, Essai sur une manière de représenter des quantités imaginaires dans les constructions géométriques, 1806, en ligne et commenté sur le site Bibnum
{{bottomLinkPreText}} {{bottomLinkText}}
Plan complexe
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?