For faster navigation, this Iframe is preloading the Wikiwand page for Pierre François Verhulst.

Pierre François Verhulst

Pierre François Verhulst
Biographie
Naissance
Décès
Nationalité
Formation
Activités
Autres informations
A travaillé pour
Membre de
Maître
Jean Guillaume Garnier (d)Voir et modifier les données sur Wikidata

Pierre-François Verhulst (né à Bruxelles[1] le - mort le dans cette même ville) est un mathématicien belge.

Inspiré par l' « Essai sur le principe de population » de Thomas Malthus, il proposa en 1838 le modèle de Verhulst, décrivant l'évolution des populations animales grâce à un modèle qui ne soit pas exponentiel. C'est dans la publication de 1845 qu'il nomme cette courbe « logistique » sans donner l'explication de ce terme[1].

Verhulst étudia les mathématiques sous la direction de Quetelet à l'Athénée royal de Bruxelles puis à l'université de Gand. À vingt ans, il remporta le prix scientifique de l'Université de Leyde pour un mémoire sur « le problème des maxima et minima », puis l'année suivante le prix de la Faculté des Sciences de Gand pour un mémoire sur le calcul des variations[2]. Sa thèse, soutenue en 1825, portait sur la résolution des équations binomiales[1].

Il retrouva ensuite son maître Quételet qui l'invita à appliquer ses connaissances mathématiques aux statistiques et à la démographie. Atteint de tuberculose, il partit en convalescence dans les États pontificaux en 1830. Il donnait quelques conférences au Musée des Sciences de Bruxelles lorsqu'en 1834 il obtint la chaire d’analyse mathématique de l'École royale militaire de Belgique. Cette position financière stable lui permit de s'attaquer à la rédaction d'un Traité des fonctions elliptiques qui ferait la synthèse des recherches menées depuis cinquante ans par Legendre, Abel et Jacobi. L'ouvrage, paru en 1841, fut suivi de son élection à l'Académie des Sciences de Belgique[1].

Le modèle de Verhulst

[modifier | modifier le code]

Les solutions de ce modèle sont, en temps continu, des fonctions logistiques d'équation :

, où
  • P est une variable dans le temps t représentant l’effectif de la population,
  • r est le « taux de croissance maximum[3] », et
  • le paramètre K est appelé la « capacité porteuse ».


En divisant des deux côtés par K et en définissant x tel que x=P/K, l’équation s’écrit alors[4] :

ce qui est la forme la plus connue de la fonction logistique.

Cette équation à variables séparées est le fondement du modèle évolutif r/K. Elle sera étendue au cas de deux populations en compétition un siècle plus tard par le mathématicien italien Vito Volterra.

  • Pierre-François Verhulst, « Notice sur la loi que la population suit dans son accroissement », Correspondance mathématique et physique, no 10,‎ , p. 113-121 (lire en ligne [PDF], consulté le )
  • Pierre-François Verhulst, Traité élémentaire des fonctions elliptiques, Bruxelles, Hayez, (lire en ligne)
  • Pierre-François Verhulst, « Recherches mathématiques sur la loi d'accroissement de la population », Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles, no 18,‎ , p. 1-42 (lire en ligne [PDF], consulté le )
  • Pierre-François Verhulst, « Deuxième mémoire sur la loi d'accroissement de la population », Mémoires de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, no 20,‎ , p. 1-32 (lire en ligne [PDF], consulté le )

Notes et références

[modifier | modifier le code]
  1. a b c et d D'après Bernard Delmas, « Pierre-François Verhulst et la loi logistique de la population », Mathématiques & sciences humaines, no 167,‎ , p. 51-81 (ISSN 0987-6936, lire en ligne)
  2. Martial Schtickzelle, « Pierre-François Verhulst (1804-1849). La première découverte de la fonction logistique », Population, 36ᵉ année no 3,‎ , p. 541-556 (DOI 10.2307/1532620).
  3. appelé aussi paramètre Malthusien, Eric Weisstein at Wolfram Research
  4. Christelle Magal, p.1

Sur les autres projets Wikimedia :

Liens internes

[modifier | modifier le code]

Liens externes

[modifier | modifier le code]
{{bottomLinkPreText}} {{bottomLinkText}}
Pierre François Verhulst
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?