For faster navigation, this Iframe is preloading the Wikiwand page for Approximation des régimes quasi stationnaires.

Approximation des régimes quasi stationnaires

En électromagnétisme, l'approximation des régimes quasi stationnaires (ARQS, on parle aussi d'ARQP pour « permanents » au lieu de « stationnaires ») consiste à considérer comme négligeable le temps de propagation des ondes électromagnétiques (OEM) devant la période du signal.

Ainsi, pour une onde électromagnétique sinusoïdale de période temporelle T et de période spatiale , telle que (où désigne la vitesse de l'onde), et pour un observateur situé à une distance d'un point quelconque du circuit, on est dans le cadre de l'ARQS si

Soit un émetteur grandes ondes de fréquence ().

  • Soit un récepteur situé à une distance de l'émetteur. Alors, le temps de propagation sera . donc l'approximation est valable.
  • Soit un récepteur situé à une distance de l'émetteur. Alors, le temps de propagation sera . n'est plus du tout négligeable devant , l'approximation n'est donc plus valable.

Conséquence dans l'écriture des équations de Maxwell

[modifier | modifier le code]

L'équation de Maxwell-Ampère :

en régime variable, donne le rotationnel du vecteur champ magnétique comme une somme de deux termes.

Or, dans l'ARQS (c'est-à-dire quand la fréquence est assez faible pour une dimension de circuit donnée), le second terme est en général négligeable devant le premier (l'exception la plus courante concerne l'espace inter-armatures d'un condensateur, dans lequel est nul).

L'équation de Maxwell-Ampère devient

.

Si on applique l'opérateur divergence à l'équation de Maxwell-Ampère, on obtient :

.

Ce qui, selon les règles de l'analyse vectorielle, donne :

.

On applique ensuite le théorème de Green-Ostrogradski :

.

La somme algébrique des intensités passant par un nœud est donc nulle. Ainsi, la loi des nœuds reste valable dans l'approximation des régimes quasi stationnaires.

{{bottomLinkPreText}} {{bottomLinkText}}
Approximation des régimes quasi stationnaires
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?