For faster navigation, this Iframe is preloading the Wikiwand page for Analyse (mathématiques).

Analyse (mathématiques)

L'analyse (du grec ἀναλύω / analúô, « délier, examiner en détail, résoudre ») a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes. Cependant, elles peuvent aussi être définies et étudiées dans le contexte plus général des espaces métriques ou topologiques.

Dans l'Antiquité et au Moyen Âge respectivement, les mathématiciens grecs et indiens se sont intéressés à l'infinitésimal et ont obtenu des résultats prometteurs mais fragmentaires.

L'analyse moderne a émergé au XVIIe siècle avec le calcul infinitésimal d'Isaac Newton et de Gottfried Wilhelm Leibniz.

Au XIXe siècle, Cauchy introduisit le concept de suite de Cauchy et commença la théorie formelle de l'analyse complexe. Poisson, Liouville, Fourier et d'autres étudièrent les équations aux dérivées partielles et l'analyse harmonique. Riemann introduisit sa théorie de l'intégration, puis Karl Weierstrass sa définition des limites. Richard Dedekind construisit les nombres réels avec ses coupures. En même temps, on commença à étudier la « taille » des ensembles de réels.

En outre, des « monstres mathématiques » commencèrent à être créés. Dans ce contexte, Camille Jordan développa sa théorie sur la mesure et Georg Cantor, ce qu'on appelle aujourd'hui la théorie naïve des ensembles. Au début du XXe siècle, le calcul infinitésimal fut formalisé grâce à la théorie des ensembles. Henri Lebesgue travailla sur la notion de mesure d'un ensemble, afin de créer de nouveaux outils mathématiques,[pas clair] [1]et David Hilbert introduisit les espaces de Hilbert. L'analyse fonctionnelle prit son essor dans les années 1920 avec Stefan Banach.

Sous-divisions

[modifier | modifier le code]

Aujourd'hui, l'analyse est divisée parmi les sous-thèmes suivants :

Autres :

Références

[modifier | modifier le code]
  1. Bernard Candelpergher, Calcul intégral, Paris, Cassini, , 128 p. (ISBN 978-2-84225-053-9)

Bibliographie

[modifier | modifier le code]
  • André Giroux, Initiation à l’analyse mathématique - Cours et exercices corrigés, Ellipses, 2014
  • Ernst Hairer et Gerhard Wanner, L'Analyse au fil de l'histoire, Springer, 2000 [lire en ligne]
  • Jacques Harthong, Cours d'analyse mathématique, Strasbourg, (lire en ligne)
{{bottomLinkPreText}} {{bottomLinkText}}
Analyse (mathématiques)
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?