For faster navigation, this Iframe is preloading the Wikiwand page for SCARA.


This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (March 2021)
Serial SCARA robot
Parallel SCARA robot

The SCARA is a type of industrial robot. The acronym stands for Selective Compliance Assembly Robot Arm[1] or Selective Compliance Articulated Robot Arm.[2]

By virtue of the SCARA's parallel-axis joint layout, the arm is slightly compliant in the X-Y direction but rigid in the Z direction, hence the term selective compliance. This is advantageous for many types of assembly operations, for example, inserting a round pin in a round hole without binding.

The second attribute of the SCARA is the jointed two-link arm layout similar to human arms, hence the often-used term, articulated. This feature allows the arm to extend into confined areas and then retract or "fold up" out of the way. This is advantageous for transferring parts from one cell to another or for loading or unloading process stations that are enclosed.

SCARAs are generally faster than comparable Cartesian robot systems. Their single pedestal mount requires a small footprint and provides an easy, unhindered form of mounting. On the other hand, SCARAs can be more expensive than comparable Cartesian systems and the controlling software requires inverse kinematics for linear interpolated moves. However, this software typically comes with the SCARA and is usually transparent to the end-user.[citation needed]

Sankyo Seiki, Pentel and NEC presented the SCARA robot as a completely new concept for assembly robots in 1981. The robot was developed under the guidance of Hiroshi Makino,[3] a professor at the University of Yamanashi.[2] Its arm was rigid in the Z-axis and pliable in the XY-axes, which allowed it to adapt to holes in the XY-axes.[4][5]


Source: [6]

See also


  1. ^ "SCARA Robots - Fanuc". Retrieved 2021-05-27.
  2. ^ a b "The Robot Hall of Fame - Powered by Carnegie Mellon University". Retrieved 2021-05-27.
  3. ^ Wu, Guanglei; Shen, Huiping (2020-08-08). Parallel PnP Robots: Parametric Modeling, Performance Evaluation and Design Optimization. Springer Nature. ISBN 978-981-15-6671-4.
  4. ^ Assembly robot US Pat. 4,341,502
  5. ^ Westerland, Lars (2000). The Extended Arm of Man, A History of the Industrial Robot. ISBN 91-7736-467-8.
  6. ^ Simionescu, P.A. (2014). Computer Aided Graphing and Simulation Tools for AutoCAD users (1st ed.). Boca Raton, Florida: CRC Press. ISBN 978-1-4822-5290-3.
  • Why SCARA? A Case Study – A Comparison between 3-axis r-theta robot vs. 4-axis SCARA robot by Innovative Robotics, a division of Ocean Bay and Lake Company
{{bottomLinkPreText}} {{bottomLinkText}}
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!

Your input will affect cover photo selection, along with input from other users.


Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?