For faster navigation, this Iframe is preloading the Wikiwand page for Neutron supermirror.

Neutron supermirror

A neutron supermirror is a highly polished, layered material used to reflect neutron beams. Supermirrors are a special case of multi-layer neutron reflectors with varying layer thicknesses.[1]

The first neutron supermirror concept was proposed by Ferenc Mezei [hu],[2] inspired by earlier work with X-rays.

Supermirrors are produced by depositing alternating layers of strongly contrasting substances, such as nickel and titanium, on a smooth substrate. A single layer of high refractive index material (e.g. nickel) exhibits total external reflection at small grazing angles up to a critical angle . For nickel with natural isotopic abundances, in degrees is approximately where is the neutron wavelength in Angstrom units.

A mirror with a larger effective critical angle can be made by exploiting diffraction (with non-zero losses) that occurs from stacked multilayers.[3] The critical angle of total reflection, in degrees, becomes approximately , where is the "m-value" relative to natural nickel. values in the range of 1–3 are common, in specific areas for high-divergence (e.g. using focussing optics near the source, choppers, or experimental areas) m=6 is readily available.

Nickel has a positive scattering cross section, and titanium has a negative scattering cross section, and in both elements the absorption cross section is small, which makes Ni-Ti the most efficient technology with neutrons. The number of Ni-Ti layers needed increases rapidly as , with in the range 2–4, which affects the cost. This has a strong bearing on the economic strategy of neutron instrument design.[4]


  1. ^ Chupp, T. "Neutron Optics and Polarization" (PDF). Retrieved 16 April 2019.
  2. ^ Mezei, F. (1976). "Novel polarized neutron devices: supermirror and spin component amplifier" (PDF). Communications on Physics (London). 1 (3): 81–85.
  3. ^ Hayter, J. B.; Mook, H. A. (1989). "Discrete Thin-Film Multilayer Design for X-ray and Neutron Supermirrors". Journal of Applied Crystallography. 22 (1): 35–41. Bibcode:1989JApCr..22...35H. doi:10.1107/S0021889888010003. S2CID 94163755.
  4. ^ Bentley, P. M. (2020). "Instrument suite cost optimisation in a science megaproject". Journal of Physics Communications. 4 (4): 045014. Bibcode:2020JPhCo...4d5014B. doi:10.1088/2399-6528/ab8a06.

{{bottomLinkPreText}} {{bottomLinkText}}
Neutron supermirror
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!

Your input will affect cover photo selection, along with input from other users.


Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?