For faster navigation, this Iframe is preloading the Wikiwand page for Behnke–Stein theorem on Stein manifolds.

Behnke–Stein theorem on Stein manifolds

In mathematics, especially several complex variables, the Behnke–Stein theorem states that a connected, non-compact (open) Riemann surface is a Stein manifold.[1] In other words, it states that there is a nonconstant single-valued holomorphic function (univalent function) on such a Riemann surface.[2] It is a generalization of the Runge approximation theorem and was proved by Heinrich Behnke and Karl Stein in 1948.[3]

Method of proof

The study of Riemann surfaces typically belongs to the field of one-variable complex analysis, but the proof method uses the approximation by the polyhedron domain used in the proof of the Behnke–Stein theorem on domains of holomorphy[4] and the Oka–Weil theorem.

References

  1. ^ Heinrich Behnke & Karl Stein (1948), "Entwicklung analytischer Funktionen auf Riemannschen Flächen", Mathematische Annalen, 120: 430–461, doi:10.1007/BF01447838, S2CID 122535410, Zbl 0038.23502
  2. ^ Raghavan, Narasimhan (1960). "Imbedding of Holomorphically Complete Complex Spaces". American Journal of Mathematics. 82 (4): 917–934. doi:10.2307/2372949. JSTOR 2372949.
  3. ^ Simha, R. R. (1989). "The Behnke-Stein Theorem for Open Riemann Surfaces". Proceedings of the American Mathematical Society. 105 (4): 876–880. doi:10.2307/2047046. JSTOR 2047046.
  4. ^ Behnke, H.; Stein, K. (1939). "Konvergente Folgen von Regularitätsbereichen und die Meromorphiekonvexität". Mathematische Annalen. 116: 204–216. doi:10.1007/BF01597355. S2CID 123982856.


{{bottomLinkPreText}} {{bottomLinkText}}
Behnke–Stein theorem on Stein manifolds
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?