For faster navigation, this Iframe is preloading the Wikiwand page for Wahres Modell.

Wahres Modell

aus Wikipedia, der freien Enzyklopädie

In der Statistik ist das zugrundeliegende wahre Modell das eigentliche Modell in der Grundgesamtheit, welches die Antwortvariable und die relevanten unabhängigen Variablen in Beziehung zueinander setzt. Diese Beziehung wird durch eine additive Störgröße überlagert, für die angenommen wird, dass sie einen Erwartungswert von Null aufweist.[1]

Die grundlegende Annahme des Modells ist, dass es linear in den Parametern ist.

Multiple lineare Regression

[Bearbeiten | Quelltext bearbeiten]

Gegeben sei das folgende multiple lineare Regressionsmodell:

 
 
 (1)
 

Hierbei ist die Anzahl der zu schätzenden unbekannten (wahren) Parameter . Die Regressionsparameter sind unbekannte, konstante Parameter des Interesses (sie gilt es zu schätzen) und ist eine unbeobachtbare Zufallsvariable, die Störgröße oder Fehlerterm genannt wird. Selbst wenn man die wahre Regressionsfunktion der Grundgesamtheit kennen würde, dann würde sich der beobachtete Wert der Zielgröße immer noch vom vorhergesagten Wert durch ein gewisses Ausmaß unterscheiden, was der Störgröße entspricht.

Formal handelt es sich bei der obigen Gleichung um das Modell in der Grundgesamtheit bzw. das Populationsmodell. Dies wird manchmal wahres Modell genannt, da mit der Annahme eines wahren Modells sichergestellt wird, dass man ein Modell schätzt, was sich von (1) unterscheidet.[2]

Man könnte beispielsweise redundante unabhängige Variablen hinzufügen. Allerdings muss das Einbeziehen von redundanten unabhängigen Variablen nicht immer ein Spezifikationsfehler darstellen (von einem Spezifikationsfehler spricht man, wenn die Annahme, dass der Erwartungswert der Störgröße gleich Null ist verletzt ist). Beispielsweise könnte das zugrundeliegende wahre Modell gegeben sein durch . Das gewählte (spezifizierte) Modell (mit der irrelevanten unabhängigen Variablen ) könnte folgendes Modell sein: . Dass die Variable als irrelevant angenommen wird bedeutet, dass der wahre Wert von gleich Null ist (). Aus diesem Grund gilt: . In diesem Fall sind die KQ-Schätzer immer noch erwartungstreu für die wahren Werte und es liegt kein Spezifikationsfehler vor.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Jeffrey Marc Wooldridge: Introductory econometrics: A modern approach. 5. Auflage. Nelson Education, 2015, S. 859.
  2. Jeffrey Marc Wooldridge: Introductory econometrics: A modern approach. 5. Auflage. Nelson Education, 2015, S. 83.
{{bottomLinkPreText}} {{bottomLinkText}}
Wahres Modell
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?