For faster navigation, this Iframe is preloading the Wikiwand page for Multikollinearität.

Multikollinearität

aus Wikipedia, der freien Enzyklopädie

Multikollinearität liegt vor, wenn zwei oder mehr erklärende Variablen eine sehr starke Korrelation miteinander haben. Mit zunehmender Multikollinearität wird in der Regressionsanalyse die Schätzung der Regressionskoeffizienten instabil. Aussagen zur Schätzung der Regressionskoeffizienten sind zunehmend ungenau und die Modellinterpretation ist nicht mehr eindeutig. Dies ist das Problem nicht identifizierbarer Parameter.

Ein Symptom starker Multikollinearität ist ein hohes Bestimmtheitsmaß einhergehend mit niedrigen t-Werten für die einzelnen Regressionsparameter.

Probleme der Multikollinearität

[Bearbeiten | Quelltext bearbeiten]

Perfekte Kollinearität macht die rechnerische Durchführung der linearen Regressionsanalyse unmöglich und tritt meist als Folge der Fehlspezifikation des zu Grunde liegenden Modells (wahres Modell) auf. Im Falle von Multikollinearität kommt es zu nicht identifizierbarer Parametern.

Numerische Instabilität

[Bearbeiten | Quelltext bearbeiten]
Die Regressionsparameter werden korrekt geschätzt, falls und unkorreliert sind (schwarz, wahre Parameter: ). Falls und korreliert sind (rot), dann ist die Schätzung der Parameter kompromittiert.

Mathematisch lässt sich die, mittels der Methode der kleinsten Quadrate gewonnene, Lösung des multiplen linearen Regressionsproblems für die Regressionskoeffizienten in Vektor-Matrix-Schreibweise darstellen als

.

Der Vektor enthält die geschätzten Regressionskoeffizienten, den Vektor und die Datenmatrix

die -dimensionalen Beobachtungswerte. Das Problem liegt in der Berechnung der Inversen von der Produktsummenmatrix ; je stärker die Multikollinearität ist, desto mehr nähert sich einer singulären Matrix an, d. h. es existiert keine Inverse.

Modellinterpretation

[Bearbeiten | Quelltext bearbeiten]

Wenn das Regressionsmodell ist und perfekte Multikollinearität vorliegt, d. h.

oder umgestellt

und setzt beide Gleichungen jeweils in das Regressionsmodell ein, so erhält man

(1)
(2)

Im Modell (1) hängt nur noch von ab und im Modell (2) hängt nur noch von ab. Es stellt sich nun die Frage, welches Modell ist das „Richtige“? In der Ökonomie spricht man von nicht identifizierbaren Modellen.

Identifikation von Multikollinearität

[Bearbeiten | Quelltext bearbeiten]

Weil empirische Daten immer einen gewissen Grad an Multikollinearität aufweisen, wurden Kennzahlen entwickelt, die Hinweise auf Multikollinearität liefern. Einen eindeutigen Richtwert gibt es jedoch nicht.

Zur Aufdeckung von Multikollinearität dient z. B. die Analyse der Korrelationskoeffizienten der Regressoren. Sehr hohe positive oder negative Korrelationskoeffizienten zeigen einen starken Zusammenhang zwischen den Regressoren und damit Multikollinearität an. Eine niedrige Korrelation zwischen den Regressoren bedeutet jedoch nicht automatisch die Abwesenheit von Multikollinearität (Beispiel [1]); auch lineare Kombinationen von Regressoren, die eine hohe positive oder negative Korrelation aufweisen, z. B. zwischen und , führen zu den oben genannten Problemen. Eine hohe Korrelation zwischen den Regressoren kann durch die Korrelationsmatrix identifiziert werden.

Bestimmtheitsmaß

[Bearbeiten | Quelltext bearbeiten]

Ein hohes Bestimmtheitsmaß der linearen Regressionen

,

d. h. der -te Regressor wird durch alle anderen Regressoren gut vorhergesagt, zeigt Multikollinearität an.

Die Toleranz wird zur Einschätzung der Multikollinearität benutzt. Ein Wert von deutet auf eine starke Multikollinearität hin.

Varianzinflationsfaktor (VIF)

[Bearbeiten | Quelltext bearbeiten]

Je größer der Varianzinflationsfaktor

, (mit als Bestimmtheitsmaß der Regression von auf alle übrigen Einflussgrößen),

desto stärker sind die Hinweise auf Multikollinearitäten. Einen definitiven Wert, ab wann der VIF eine (zu) hohe Multikollinearität anzeigt, gibt es nicht. Als Daumenregel werden häufig VIF-Werte von über 10 als „zu hoch“ eingestuft.[2]

Konditionsindex

[Bearbeiten | Quelltext bearbeiten]

Die Produktsummenmatrix ist positiv semidefinit, d. h. alle Eigenwerte der Matrix sind positiv oder Null. Wird die Matrix singulär, dann ist mindestens ein Eigenwert gleich Null. Ist der Konditionsindex

für ein größer als 30 spricht man ebenfalls von starker Multikollinearität.

  • L. von Auer: Ökonometrie – Eine Einführung. 7. Auflage. Springer, Berlin 2016, ISBN 978-3-662-47868-4, S. 561–588.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. https://www.sgipt.org/wisms/EWA/EWA0.htm#Unauffaellige%20Korrelationsmatrix
  2. Siehe für die Daumenregel und eine Diskussion dazu: Wooldridge, Introductory Econometrics:A Modern Approach, 2013, S. 98.
{{bottomLinkPreText}} {{bottomLinkText}}
Multikollinearität
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?