For faster navigation, this Iframe is preloading the Wikiwand page for Linearer Prädiktor.

Linearer Prädiktor

aus Wikipedia, der freien Enzyklopädie

In der Statistik und dort insbesondere in der parametrischen Regressionsanalyse ist ein linearer Prädiktor eine Linearkombination einer Reihe von Koeffizienten (Regressionskoeffizienten) und erklärenden Variablen (unabhängige Variablen), deren Wert zur Vorhersage (Prädiktion) einer Antwortvariablen verwendet wird. Diese additiv-lineare systematische Komponente ist ein Hauptbestandteil von linearen Regressionsmodellen.

In der parametrischen Regressionsanalyse wird mittels mehrerer Regressionsparameter ein Suchraum aus potenziellen Regressionsfunktionen gebildet. Im Anschluss soll diejenige Parameterkonfiguration bestimmt werden, die die höchste Anpassungsgüte für die beobachteten Werte der Antwortvariablen und erklärenden Variablen liefert. Die wichtigsten Modellklassen der parametrischen Regressionsanalyse sind zum einen die Klasse der linearen Modelle und zum anderen die Klasse der verallgemeinerten linearen Modelle. Das Beiwort „linear“ resultiert daraus, dass die beiden Modellklassen auf dem linearen Prädiktor aufbauen, der wie folgt definiert ist

.

Dieser linearen Prädiktor wird aus den erklärenden Variablen und den festen, aber unbekannten Regressionsparametern gebildet, wobei für gewöhnlich gleich eins gesetzt wird (). Der Parameter ist somit der Achsenabschnitt der Regressionsgerade bzw. genauer „Regressionshyperebene“. Er bestimmt das Niveau des linearen Prädiktors und wird folglich auch Niveauparameter genannt. In der Regressionsanalyse geht es darum den Achsenabschnitt , die Steigungsparameter und die Varianz der Störgrößen zu schätzen.[1]

Lineare Modelle vs. verallgemeinerte lineare Modelle

[Bearbeiten | Quelltext bearbeiten]

Lineare Modelle gehen vom folgenden Zusammenhang zwischen der Regressionsfunktion und dem linearen Prädiktor aus

.

Verallgemeinerte lineare Modelle dagegen gehen von aus, dass der Erwartungswert der Antwortvariablen erst durch eine geeignete invertierbare Kopplungsfunktion die Form eines linearen Prädiktors annimmt[2]

.

Mit der Umkehrfunktion der Kopplungsfunktion, der Antwortfunktion ergibt sich für die Regressionsfunktion in diesem Fall

.

Vektor-Matrix-Schreibweise

[Bearbeiten | Quelltext bearbeiten]

Mittels Vektor-Matrix-Schreibweise lässt sich der lineare Prädiktor wie folgt schreiben:

, wobei und .

Hierbei ist ein -Spaltenvektor und ist ein transponierter -Spaltenvektor, sodass das Produkt eine -Matrix bzw. ein Skalar ergibt.

Verwendung in der linearen Regression

[Bearbeiten | Quelltext bearbeiten]

Ein Beispiel für die Verwendung eines linearen Prädiktors ist die lineare Regression, bei der jeder die Beziehung zwischen erklärenden Variablen und Antwortvariablen durch eine additive Störgröße überlagert wird. In der multiple lineare Regression lässt sich der Zusammenhang wie folgt schreiben:

.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Torsten Becker, et al.: Stochastische Risikomodellierung und statistische Methoden. Springer Spektrum, 2016. S. 288.
  2. Torsten Becker, et al.: Stochastische Risikomodellierung und statistische Methoden. Springer Spektrum, 2016. S. 288.
{{bottomLinkPreText}} {{bottomLinkText}}
Linearer Prädiktor
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?